Fighting Resistance with Rapidity: Antimicrobial Stewardship and Rapid Diagnostics

2017 Illinois Summit on Antimicrobial Stewardship

Eric Wenzler, PharmD, BCPS Assistant Professor Department of Pharmacy Practice College of Pharmacy University of Illinois at Chicago 7/11/17

Disclosure

 I have no actual or potential conflicts of interest in relation to this program or presentation

Objectives

- Review impact and knowledge of rapid diagnostic tests (RDTs)
- Discuss diagnostic stewardship and its components
- Examine the RDT and antimicrobial stewardship (ASP) relationship
- Identify limitations and future directions of RDTs and ASPs

Stewardship Guidelines

- Recommend implementing syndromebased interventions
- Endorses the use of RDTs in bloodstream infections (BSIs) with ASP intervention
 - "Weak" recommendation with moderate quality evidence

	mRD	т	Conventio	onal Tes	ting		
Study or Subgroup	Events	Total	Events	Total	Weight, %	OR (95%CI)	OR (95%CI)
1.1.1 mRDT with ASP							
Bauer et al [17] (2010)	15	82	19	74	5.6	0.65 (.30-1.39)	
Bias et al [19] (2015)	3	37	7	55	1.8	0.61 (.15-2.51)	· · · · · ·
Box et al [20] (2015)	6	64	10	103	3.0	0.96 (.33-2.79)	
Forrest et al [24] (2006)	2	119	2	84	0.9	0.70 (.10-5.08)	
Forrest et al [23] (2006)	19	72	20	76	6.0	1.00 (.48-2.09)	
Forrest et al [25] (2008)	17	95	37	129	7.4	0.54 (.28-1.04)	
Heil et al [27] (2012)	5	21	19	61	2.7	0.69 (.22-2.16)	
Huang et al [29] (2013)	31	245	52	256	11.8	0.57 (.3592)	
Lockwood et al [30] (2016)	11	241	14	149	4.9	0.46 (.201.04)	
Macvane et al [32] (2015)	5	63	5	50	2.1	0.78 (.212.84)	
Macvane et al [33] (2016)	6	23	16	45	2.8	0.64 (.211.95)	
Nagel et al [36] (2014)	11	117	19	129	5.3	0.60 (.271.32)	
Pardo et al [39] (2016)	5	84	37	252	3.6	0.37 (.1497)	
Perez et al [15] (2013)	6	107	12	112	3.3	0.50 (.18-1.37)	
Revolinksi et al [40] (2015)	8	95	13	133	4.0	0.85 (.34-2.14)	
Sango et al [42] (2013)	11	28	7	46	2.8	3.61 (1.19-10.89)	
Sothoron et al [43] (2015)	5	67	4	59	1.9	1.11 (.28-4.34)	
Suzuki et al [44] (2015)	3	88	19	147	2.3	0.24 (.0783)	
Walker et al [45] (2016)	8	97	19	98	4.3	0.37 (.1690)	
Subtotal		1745		2058	76.5	0.64 (.51– .79)	•
Total events	177		331				
Heterogeneity: $\tau^2 = 0.01 \chi^2$	= 19.00	(df = 18)	; P=.39); /	² = 5%			
Test for overall effect: $z = 4$.	14 (P<	.001)					
1.1.2 mRDT without ASF	Þ						
Beuving et al [18] (2015)	14	114	8	109	4.1	1.77 (.71-4.40)	
Felsenstein et al [22] (2016	6) 5	189	11	194	3.0	0.45 (.15-1.33)	
Frye et al [26] (2012)	14	110	17	134	5.7	1.00 (.47-2.14)	
Ly et al [31] (2008)	8	101	17	101	4.2	0.43 (.17-1.04)	
Maslonka et al [34] (2014)	6	55	10	55	2.9	0.55 (.19-1.64)	
Neuberger et al [37] (2008)) 1	42	4	42	0.7	0.23 (.02-2.17)	
Wang et al [46] (2013)	8	48	8	38	29	0.75 (25-2.23)	
Subtotal		659		673	23.5	0.72 (.46-1.12)	•
Total events	56		75				
Heterogeneity: $\tau^2 = 0.08 \chi^2$	= 7.74 (df = 6; F	= .26); / ² =	= 23%			
Test for overall effect: $z = 1$.	46(P = 1)	15)					(Timbrook, Morton et al. 2017

RDT Knowledge

- Electronic survey of 224 ID PharmDs
 - 87.9% with ≥0.5 FTE for ASP
 - 73% with RDT for <3 years
- Multiplex PCR most common RDT @ 42.1%
 - 58% reported familiarity with multiplex PCR
- ONLY 32.5% had assessed outcomes related to RDT implementation

RDT Knowledge

- Electronic survey of 156 physicians
- 60% would adjust therapy based on RDT result
- 29.4% had viewed the ASP website for RDT interpretation guide
 - Significantly better knowledge scores for those who had viewed guide

Goal	Key question	Key considerations and potential strategies
Right test	Is the test appropriate for the	Sensitivity and specificity
	clinical setting?	Predictive values
	5	Testing volumes
		Diagnostic yield
		Laboratory feasibility
		Cost
		Clinical impact
Right patient	Will the clinical care of the patient	Laboratory test utilization committee
	be affected by the test result?	Automatic laboratory reflex
		CPOE decision support
		Appropriate use criteria
		Indication selection
		Prior authorization
		Benchmarking
		Specimen rejection
Right time	Will the result be available in time	Time to specimen receipt
-	to optimally affect care?	Centralized vs point-of-care testing
		On-demand vs batched testing
		Specimen preparation time
		Run time
Messacar, Parker et al. 2017)		Result reporting time

	Cost (\$) per patie		
Parameter	Preintervention $(n = 233)$	Intervention $(n = 247)$	P value
Cost accounting system			
ICU	13,783 (41,235)	11,023 (24,666)	0.279
Acute care	9,977 (12,463)	9,901 (11,050)	0.566
Pharmacy	5,172 (14,743)	5,501 (10,388)	0.169
Respiratory/pulmonary	3,211 (9,158)	3,139 (10,409)	0.435
Blood procedures	2,724 (11,346)	3,399 (9,987)	0.005
Laboratory	2,188 (4,671)	1,998 (2,537)	0.182
Imaging service	2,177 (3,815)	2,155 (3,514)	0.337
Operating room	1,407 (5,529)	1,790 (7,435)	0.771
Cardiac services	929 (4,740)	924 (5,274)	0.179
Emergency service	698 (1,693)	910 (2,150)	0.851
Anesthesia	224 (813)	207 (574)	0.512
Nephrology	690 (2,463)	958 (2,667)	0.266
Other ^c	1,816	596	NS ^d
Total ^b	44,996 (88,119)	42,501 (56,604)	0.209
MALDI-TOF device, reagent, and antimicrobial stewardship pharmacist time (intervention period only)	0	79	
Pharmacist time	0	36	
MALDI lease (3 mo)		40	
Isolate identification and personnel costs		3	
Vitek for organism identification (3 mo; preintervention only) ^e	23	0	
Total (cost accounting plus incremental costs for intervention)	45,019	42,580	NS

. . .

(Patel, Kaakeh et al. 2017)

Core Element	How RDT impacts or fulfills core element
Leadership Support financial support 	• Financial backing required from administration for initial fixed and variable costs associated with implementation of RDT
Accountability physician leader responsible for ASP 	 Accountable for RDT implementation and outcomes Can prioritize use of RDT as daily ASP activities Advocate resource utilization to appropriately implement, track, and report results
 Drug Expertise pharmacist leader to improve antibiotic utilization 	 ASP pharmacist generally performs daily ASP interventions Help streamline process for antibiotic administration from pharmacy in timely manner Helps collect and analyze data
 Actions implement specific intervention to improve antibiotic use 	 Prospective audit and feedback on positive blood cultures Considered advanced activity per Playbook as diagnosis and infection-specific intervention Align with local needs Measurable outcomes

UIC UNIVERSITY OF ILLINOIS AT CHICAGO

Core Element	How RDT impacts or fulfills core element
 Tracking/Monitoring process measures monitoring compliance with specific intervention in place 	 Considered intermediate activity to monitor a specific intervention per Playbook RDT provides a tangible outcome to monitor and is targeted Event is not too frequent resulting in extensive data collection Outcomes include: mortality, LOS, time to appropriate therapy, time to optimal therapy
Reporting share outcomes with key stakeholders 	 Outcomes shared with key stakeholders C-suite: confirms continual ASP support, demonstrate follow through for accountability core element Pharmacy Director use reporting as demonstration of pharmacy activities and impact Other stakeholders: various subgroups within hospital that may benefit – ie ED, ICU
Education can perform education to clinicians 	 Provided at RDT roll out to improve acceptance rates RDT data may be provided to improve confidence in ASP when making recommendations with RDTs
UIC UNIVERSITY OF ILLINOIS AT CHICAGO	

RDT & ASP

Goal	Key question	Key considerations and potential strategies ^a
Right interpretation	Will the clinician understand the test result?	Result report language
		Selective reporting of relevant results
		AS prospective audit and feedback
		AS real-time decision support
Right antimicrobial	Will the clinician appropriately modify antimicrobials	Clinical practice guidelines
-	based on the test result?	EMR-based decision support with result reporting
		AS prospective audit and feedback
		AS real-time decision support
Right time	Will the clinician act upon the test result promptly?	EMR reporting
2		Results called with readback reporting
		AS prospective audit and feedback
		AS real-time decision support

RDT & ASP Outcomes

- Time to effective therapy
- Time to optimal therapy

- Infection control
- Patient isolation
- Clinical cure
- Duration of therapy
- Mortality

• SAAR

Cost

RDT & ASP & Microbiology

Laboratory verification of RDT

Communication of RDT results

- Interface with LIS and EMR
- Reporting of RDT and traditional culture results

RDT & ASP

Blood Culture Assay	Pathogens Detected	Resistance Markers	Turnaround Time (After Blood Cultures Turn Positive)
PNA-FISH	Staphylococcus aureus, CoNS, Enterococcus faecalis, other enterococci, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Candida albicans, Candida parapsilosis, Candida glabrata, Candida krusei, Candida tropicalis	No	1.5–3 h
QuickFISH	S. aureus, CoNS, E. faecalis, other enterococci, E. coli, K. pneumoniae, P. aeruginosa	No	<30 min
MALDI-TOF ^a	Gram-positive and gram-negative bacteria, yeast, fungi, filamentous fungi, mycobacteria	In development	10–30 min
Gene Xpert MRSA/SA	S. aureus	mecA	<1 h
Verigene gram-positive blood culture (BC-GP)	S. aureus, Staphylococcus epidermidis, Staphylococcus lugdunensis, Streptococcus anginosus group, Streptococcus agalactiae, Streptococcus pneumoniae, Streptococcus pyogenes, E. faecalis, Enterococcus faecium, Staphylococcus spp., Streptococcus spp., Listeria spp.	mecA, vanA, vanB	2.5 h
Verigene gram-negative blood culture (BC-GN) ^b	Escherichia coli, Shigella spp., K. pneumoniae, Klebsiella oxytoca, P. aeruginosa, Serratia marcescens, Acinetobacter spp., Proteus spp., Citrobacter spp., Enterobacter spp.	KPC, NDM, CTX-M, VIM, IMP, OXA	2 h
FilmArray blood culture identification (BC ID)	S. aureus, Staphylococcus spp., S. agalactiae, S. pneumoniae, S. pyogenes, Streptococcus spp., Enterococcus spp., Listeria monocytogenes, Hemophilus influenza, Neisseria meningitides, Enterobacter cloacae complex, E. coli, K. pneumoniae, K. oxytoca, P. aeruginosa, Serratia marcescens, Acinetobacter baumanii, Proteus spp. C. albicans, C. glabrata, C. krusei, C. parapsilosis, C. tropicalis	mecA, vanA, vanB	1 h

RDT limitations

- Not universal organism coverage
- Lack of resistance determinants
- Solely genotypic resistance markers
- No direct-from-specimen bacterial RDTs
- Few non-blood RDTs
- Costs

Cannot replace conventional microbiology

Future of RDTs & ASP

- Improve study design of RDT + ASP studies
- Direct-from-blood/specimen assays
- Total laboratory automation
- Registrational trials incorporating RDTs
- Pharma pairing with diagnostic companies

 Identification and susceptibility directly from positive blood cultures within 7 hours

Morphokinetic cellular analysis

 ID and AST based on established reference values for mass, shape, growth pattern, and growth rate

JIC UNIVERSITY OF ILLINOIS AT CHICAGO

Gram-Positive	Sens.	Spec.
S. aureus	97.9	98.5
Coag-negative Staph spp.	95.3	98.2
S. lugdunensis	97.5	99.9
E. faecium	98.0	99.1
E. faecalis	97.0	99.9
Streptococcus spp.	97.2	97.6
Gram Positive Total	97.0	98.9

Antibiotic	EA%	CA%
Ceftaroline	94.9	99.5
Daptomycin	98.1	99.6
Vancomycin	97.2	97.9
Erythromycin	98.3	96.6
Linezolid	98.9	99.6
Ampicilin	100.0	100.0
TMP-SMX	96.0	96.0
Doxycycline	94.4	95.8

			Antibiotic	EA%	CA%
			Amikacin	93.8	93.8
	•		Gentamicin	99.5	98.7
Gram-Negative	Sens.	Spec.	Tobramycin	96.3	96.0
Escherichia coli	97.3	99.7	Ertapenem	98.8	98.5
<i>Klebsiella</i> spp.	96.1	99.6	Meropenem	96.7	96.9
Citrobacter spp.	96.8	99.3	Cefazolin	95.7	85.6
Enterobacter spp.	97.3	99.5	Cofonimo	96.2	95.5
Proteus spp.	97.7	99.6	Celepinie	00.2	92.1
Serratia marcescens	100	99.9		92.4	92.1
Pseudomonas aeruginosa	100	99.4	Cettriaxone	94.7	96.4
Acinetobacter baumannii	98.6	99.7	Cipro	98.4	98.4
Gram Negative Total	97.6	99.6	Aztreonam	96.4	97.6
orall rogation rotal			Amp-Sulb	91.0	82.7
			Pip-Taz	91.0	90.8
UIG AT CHICAGO			Colistin	94.9	97.6

	AXDX Reportable MIC Ranges						
Antimicrobial Agent	E. coli	<i>Klebsiella</i> spp.	Enterobacter spp.	Proteus spp.	S. marcescens	<i>Citrobacter</i> spp.	
Amikacin	4-128	4-128	4-128	4-128	4-128	4-128	
Gentamicin	1-32	1-32	1-32	1-32	1-32	1-32	
Tobramycin	1-32	1-32	1-32	1-32	1-32	1-32	
Cefepime	1-32	1-32	1-32	1-32	1-32	1-32	
Ceftazidime	2-32	2-32	2-32	1-32	1-32	2-32	
Ceftriaxone	0.25-8	0.25-8	0.25-8	0.5-8	0.5-8	0.25-8	
Cefazolin-CLSI	0.5-16	0.5-16					
Ertapenem	0.12-4	0.12-4	0.12-4	0.12-4	0.12-4	0.12-4	
Meropenem	0.25-8	0.25-8	0.5-8	0.25-8	0.25-8	0.25-8	
Ciprofloxacin	0.25-8	0.25-8	0.5-8	0.25-8	0.25-8	0.25-8	
Amp-sulb	2-64	2-64		4-64			
Pip/tazo	4-256	4-256	4-256	4-256	4-256	4-256	
Aztreonam	1-32	1-32	1-32	1-32	1-32	1-32	
Colistin	0.5-8	0.5-8	0.5-8			0.5-8	

Limitations

- Does not cover all organisms
- ID and AST affected by low clone counts and loss of camera focus
- COST
 - 1 sample per module at a time
 - \$120,000 for system with 1 module
 - \$80,000 each additional module
 - \$250/sample

OF ILLINOIS

~\$15,000 in yearly maintenance

Fighting Resistance with Rapidity: Antimicrobial Stewardship and Rapid Diagnostics

2017 Illinois Summit on Antimicrobial Stewardship

Eric Wenzler, PharmD, BCPS Assistant Professor Department of Pharmacy Practice College of Pharmacy University of Illinois at Chicago 7/11/17

