Antimicrobial Stewardship Metrics What to do?

Gail S. Itokazu, PharmD University of Illinois at Chicago, College of Pharmacy; John H. Stroger Jr. Hospital of Cook County

Disclosure

 I have no actual or potential conflict of interest in relation to this program or presentation

- Commercial Interests:
 - none

There are no standard, universally accepted metrics,

.....for assessing the effectiveness of antimicrobial stewardship programs (ASPs)

Akpan. *Antibiotics* 2016;5:5. Dodds Ashley. *Clin Infect Dis* 2014 59(s3:112). Nagel. *Clin Infect Dis* 2014;59(S3):S146.

Goals of ASPs

.....optimal clinical outcomes

.....appropriate use

....limit the selection of antimicrobial resistant strains

ASPs are struggling to identify appropriate <u>measures</u> of success;

Nevertheless.....

<u>Accurate measurement</u> is required before any improvement can take place

Morris. *Current Treatment Options in Infectious Diseases* 2014; 6:101. Reddy. *Expert Rev Anti Infect Ther*; 2015; 13:843

Can we learn from other programs that have demonstrated the value of their efforts?¹

Infection Control, in 2016....

...interventions that prevent bloodstream infections can be of high value...specifically;

- 57% fewer bloodstream infections

– Net savings: \$1.85 million/hospital over 3 years²

¹Schwartz. *Clin Infect Dis* 2016; 63:450. ²Nuckols. Economic evaluation of quality improvement interventions for bloodstream infections related to central catheters. A systematic review. *JAMA Intern Med*. 2016;176(12):1843.

Objectives

- Review milestones in the emergence of Infection Control Programs (ICPs); focusing on the development of metrics for ICPs.
- 2. Review Joint Commission's expectations for ASPs with respect to metrics.
- 3. Review for ASPs:
 - Commonly recommended process and outcome metrics
 - Selecting process measures and performance metrics to measure the performance of ASP's interventions.
- 4. Review knowledge gaps in the area of ASP metrics.

Infection Surveillance and Control Programs (ISCPs)

50+ years... and <u>still</u> evolving....

Infection Surveillance and Control Programs (ISCPs)

<u>1950s – 60s</u>

Staphylococcal pandemic (pcn- resistant S. aureus)
 "Antibiotic resistance became a serious problem."

- Voluntary formation of Infection Control Programs

- <u>1960s</u>
 - CDC recommends regular surveillance
 - Data collection to <u>inform</u> rational infection control measures

Wise. *Rev Infect Dis* 1989; 11:1005. Haley. *Am J Epidemiol* 1985; 121:182. Dixon. *MMWR* 2011; 60:58.

1960s-70s Who will fund these programs?

Inadequate evidence to <u>mandate</u> infection control programs

Haley. Am J Epidemiol 1985; 121:182. Dixon. MMWR 2011; 60:58.

Study on the Effectiveness of Nosocomial Infection Control <u>(SENIC)</u> Project^{1,2} (CDC 1970-76)

Infection control program	Outcome Hospital infection rate
Effective ³	32% reduction
Not effective	18% increase

¹Haley. *Am J Epidemiol* 1985; 121:182. ² Dixon. *MMWR* 2011; 60:58. ³"<u>Control index</u>" measures the intensity of efforts to intervene to reduce infection risk. Effective program elements: trained personnel, surveillance, active preventive interventions, regular reporting surgical wound infection rates to surgeons.

THE EMERGENCE OF INFECTION SURVEILLANCE AND CONTROL PROGRAMS IN US HOSPITALS: AN ASSESSMENT, 1976

Haley. Am J Epidemiol 1980; 111:574.

1976

Joint Commission Standard for Infection Surveillance & Control Programs

2017

Joint Commission Standard for Antimicrobial Stewardship Programs

Objectives

- 1. Review milestones in the emergence of Infection Control Programs (ICPs); focusing on the development of metrics for ICPs.
- 2. Review Joint Commission's expectations for ASPs with respect to metrics.
- 3. Review for ASPs:
 - Commonly recommended process and outcome metrics
 - Selecting process measures and performance metrics to measure the performance of ASP's interventions
- 4. Review knowledge gaps in the area of ASP metrics.

Joint Commission 2017 What type of antimicrobial stewardship data should organizations collect, analyze, and report?

....<u>not</u> requiring any specific antimicrobial stewardship data

.....the <u>organization</u> must determine the antimicrobial stewardship data it will collect, analyze, and report

Where to start.....performance metrics

https://www.jointcommission.org/assets/1/6/New_Antimicrobial_Stewardship_Standard.pdf

Good faith effort to foster <u>real quality</u> improvement

Efforts should not.....

.....create incentives for providers to improve *measured* performance,

...without truly improving *quality* of care

"Not just a "checkbox"

Nathwani. J Hosp Infect 2003; 50:165. https://www.ncbi.nlm.nih.gov/books/NBK43831/

Performance metrics -Imperatives for ASPs

Focus on an area of an ASP that is:

- *Important/problematic* to the organization
- Marked *variation* in practice
- Good evidence to support a practice which can be <u>simply</u> measured

Nathwani. J Hosp Infect 2003; 50:165.

Performance metrics – case study

- Piperacillin/tazobactam <u>plus</u> vancomycin —associated with a higher risk for nephrotoxicity
 - –compared to alternative beta-lactams plus vancomycin^{1,2}
- Commonly used antibiotic regimen

¹Navalkele. *Clin Infect Dis* 2017; 64:116. ²Hammond. *Clin Infect Dis* 2017; 64:666.

Performance metrics

Steps to Quality Improvement^{1,2,3}

WHAT
Are we trying to accomplish?Avoid PT-V, promote Cef-V, +/- metro4WHY is it important?
Nephrotoxicity riskWHO is the specific target population?Adult ED and hospitalized patients

<u>WHEN</u> will this be carried out? <u>HOW</u> will this be carried out? WHAT is the data source?

¹McGowan. *J Antimicrob Chemother* 2016; 71:2370. ²Rubin. *Int J Quality in Health Care* 2001; 6:489. ³McGlynn. *Am J Prev Med* 1998; 14(3S):14. ⁴PT-V (piperacillin/tazobactam plus vancomycin; Cef-V, +/- metro (cefepime plus vancomycin, +/- metronidazole)

Steps to Quality Improvement (cont)

• <u>WHAT</u> are our measureable goals?

	Pre- intervention	Post- intervention
% cases on PT-V		
% cases on Cefepime-V, +/- metronidazole		

• HOW will we know our changes are working?

- Less nephrotoxicity
- Requires <u>risk-adjustment</u> for nephrotoxicity

<u>Steps to Quality Improvement (cont)</u>

 <u>HOW</u> do we know if the intervention is harmful?

(Measure unintended consequences)

- <u>Omitting</u> metronidazole when indicated e.g., intra-abdominal infections (cefepime-based)
- Change in *C. difficile* incidence
- Rates of super-infection due to *Enterococcus*, ESBL-producing gram-negatives

Unintended consequences (cont)

Intervention	Unintended consequences
Targeting specific agents	Increase in use of other agents, especially agents with a similar spectrum
e.g., reduce piperacillin/tazobactam	Increase use of other anti- pseudomonal agents (e.g., cabapenems)
Surgical prophylaxis ¹	Increased gentamicin nephrotoxicity
Replace cephalosporins with gentamicin	

¹Weeraporn. Ann Transl Med 2017; 5:100.

Steps to Quality Improvement (cont)

<u>HOW</u> completely was the intervention implemented?

% implemented =

cases assessed× 100Total # of cases

Steps to Quality Improvement (cont)

<u>Validity</u> of data - alternate reasons for results <u>Example</u>: Intervention reduces specific antibiotic usage

- Intervention
- Shorter length of stay
- Fewer admissions
- Switch to other antibiotics

 Assessing overall antibiotic
 use can help sort this out

Reason for reduction in usage? Your experience with a Joint Commission survey of your ASP?

Objectives

- 1. Review milestones in the emergence of Infection Control Programs (ICPs); focusing on the development of metrics for ICPs.
- 2. Review Joint Commission's expectations for ASPs with respect to metrics.
- 3. Review for ASPs:
 - Commonly recommended process and outcome metrics
 - Selecting process measures and performance metrics to measure the performance of ASP's interventions
- 4. Review knowledge gaps in the area of ASP metrics.

Quality Improvement

Defining <u>key processes</u> for improvement and <u>metrics</u> to monitor performance

Processes

- Interventions
- Quality indicators

Demonstrated <u>linkage</u> to improve outcome

<u>Outcomes</u>

Dodds Ashley. *Clin Infect Dis* 2014;59(S3):S112. Porter. *JAMA* 2016; 316:1047.

Resources: Process and Outcome Metrics

<u>Hospitals</u>

- Core Elements¹
- National Quality Partners Playbook on Antibiotic Stewardship²
- Systematic review of Quality Indicators³

Nursing Homes

Core Elements⁴

Outpatient

Core Elements⁵

¹ https://www.cdc.gov/getsmart/healthcare/pdfs/core-elements.pdf.

² http://www.qualityforum.org/Publications/2016/05/National

Quality_Partners_Playbook__Antibiotic_Stewardship_in_Acute_Care.aspx.

³https://www.cdc.gov/longtermcare/prevention/antibiotic-stewardship.html. ⁴WP1A quality indicators and quantity metrics of antibiotic use. 2016. Available from: http://driveab. eu/wp-content/uploads/2014/ 09/WP1A_Final-QMs-QIs_final.pdf. ⁵https://www.cdc.gov/mmwr/volumes/65/rr/rr6506a1.htm

Infection-specific quality indicators

- Pneumonia^{1,2}
- Sepsis³
- Urinary tract⁴
- Appropriate antibiotic use in hospitalized adults⁵

Expert consensus

- Guideline adherence
- Obtain cultures
- Targeted therapy

Others

¹Nathwani. *Clin Infect Dis* 2002; 34:318. ²Schouten. *Clin Infect Dis* 2005; 41:450. ³van den Bosch. *BMC Infect Dis* 2014; 14:345. ⁴Spoorenberg. *Clin Infect Dis* 2014;58:164. ⁵van den Bosch. *Clin Infect Dis* 2015;60(2):281.

Quality of Antimicrobial Prescribing^{1,2}

- Diagnostic criteria
- Empiric therapy
- Obtain cultures
- Culture-directed therapy
- Redundant regimen²
- IV/PO
- Document indication
- Duration of therapy

*

No consensus on what combination of these metrics constitutes "quality prescribing"

¹van den Bosch. *Clin Microbiol Infect* 2016; 888e1. ² Schultz. *Infect Control Hosp Epidemiol* 2014; 35:1229.

<u>Test</u> the utility of the quality indicator <u>before</u> widespread adoption^{1,2}

Applicability of generic quality indicators for appropriate antibiotic use in daily hospital practice: a cross-sectional point-prevalence multicenter study

C.M.A. van den Bosch ^{1, *}, M.E.J.L. Hulscher ², S. Natsch ³, J. Wille ⁴, J.M. Prins ¹, S.E. Geerlings ¹

4 /11 previously selected quality indicators were <u>not</u> clinically useful metrics

- Low applicability
- Low improvement potential
- Feasibility³

¹van den Bosch. *Clin Microbiol Infect* 2016; 22:888.e1. ²van den Bosch. *Clin Infect Dis* 2015;60(2):281. ³Moehring. *Clin Infect Dis* 2017; 64:377.

Which intervention (process measure) should be selected?

<u>Tailor</u> interventions to the most important issues at your site

Benchmarking Process Measures Are there data?

Benchmarking Process Measures Veterans Health Administration (VHA)

Kelly. Infect Cont Hosp Epidemiol 2017,38:513.

"VHA is blazing a trail to improve patient safety through better antibiotic use"

... and working with the CDC to advance the science of using antibiotic use data to *guide action*

Srinivasan. Infect Control Hosp Epidemiol 2017,38:522.
Quality Improvement

Defining <u>key processes</u> for improvement and <u>metrics</u> to monitor performance

<u>Processes</u>

- Interventions
- Quality indicators

Demonstrated <u>linkage</u> to improve outcome

<u>Outcomes</u>

Dodds Ashley. *Clin Infect Dis* 2014;59(S3):S112. Porter. *JAMA* 2016; 316:1047.

Outcomes^{1,2}

- Antibiotic use measures
- Patient outcomes
 - Mortality, LOS
 - Infection-related mortality
 - Unintended consequences (eg: C. difficile)
 - Not showing harm³
 - Conservable antibiotic days⁴
 - Unplanned readmission⁵
 - Unnecessary FQ days⁵
- <u>Resistance</u>
- Cost (value of healthcare)

¹Dodds Ashley. *Clin Infect Dis* 2014; (suppl 3):S112. ²Schuts. *Lancet Infect Dis* 2016; 16:847. ³Moehring. *Clin Infect Dis* 2017; 64:377. ⁴Morris. *Infect Control Hosp Epidemiol* 2012; 33:500. ⁵Werner. *BMC Infect Dis* 2011; 11:187.

Antibiotic use measures National Healthcare Safety Network (NHSN)

Antibiotic use (AU)

 Standardized Antimicrobial Administration Ratio (SAAR) Application of NHSN data <u>Aggregate data</u>

Helps an organization focus resources:

- an antibiotic or class of antibiotics
- that appear to be an outlier
- when compared with other facilities

* Your experiences with NHSN data?

Reddy. Expert Rev Anti Infect Ther 2015; 13: 843.

Antibiotic Use (AU) calculation

AU = Days of therapy (DOT) Days present ¹ <u>or</u> Admissions ²

¹Number of days patient spent any time in a specific unit or facility ²Number of patients admitted to an inpatient location in the facility

https://www.cdc.gov/getsmart/healthcare/implementation/core-elements.html

Standardized Antimicrobial Administration Ratio¹ Risk-adjusted • Patient mix

Hospital characteristics

SAAR Value =

Observed number of abx days Predicted² number of abx days

¹ Each SAAR is an observed to predicted ratio for a combination of antibiotics and patient care locations. SAAR (>1.0) indicates more AU than predicted; i.e., achieves statistical significance (different than 1.0). ²Statistically estimated from nationally aggregated data.

Application of SAARs

A Novel Metric to Monitor the Influence of Antimicrobial Stewardship Activities (SAAR)

Daniel J. Livorsi, MD, MSc;^{1,2} Erin O'Leary, MPH;³ Tamra Pierce, PharmD;⁴ Lindsey Reese, MD;⁴ Katharina L. van Santen, MSPH;³ Daniel A. Pollock, MD;³ Jonathan R. Edwards, MStat;³ Arjun Srinivasan, MD³

Prospective audit and feedback program:

- implementation of processes to *reduce broad-spectrum agents*
- greater involvement of an ID physician

.....associated with reduction in SAAR values across multiple antimicrobial categories

Livorsi. Infect Control Hosp Epidemiol 2017; 38:721.

Application of SAARs

(Declines in broad-spectrum use, p <.001)

Findings consistent with efforts to:

 Encourage the prescription of more narrow-spectrum agents

Not associated with increased LOS or mortality

Livorsi. *Infect Control Hosp Epidemiol* 2017; 38:721. Non-significant change between 2015-2014 of broad-spectrum antibiotics (BSA) for community infections, and all antibiotics.

Application of NHSN data (Aggregate data) (cont)

Does not:

 Inform about the appropriateness (quality) of antimicrobial prescribing

Reddy. Expert Rev Anti Infect Ther 2015; 13: 843.

Patient-specific outcomes

Metrics and quality improvement

Processes

Demonstrated *linkage* to improve outcome

Validity of linkage based on:

- scientific literature
- expert panel consensus

Mainz. Int J for Quality in Health Care 2003; 15:523.

Current evidence on hospital antimicrobial stewardship objectives: a systematic review and <u>meta-analysis</u>

Schuts. Lancet Infect Dis 2016; 16:847.

Clinical outcomes (mortality, LOS)

Adverse events

Bacterial resistance rates

Costs

Quality indicators for appropriateness of antibiotic use

Is there a link?

Pre-determined outcomes:

- Clinical outcomes (mortality, LOS)
- Adverse events
- Bacterial resistance rates
- Costs

Schuts. Lancet Infect Dis 2016; 16:847.

Literature search identified 14 quality indicators

Source	Comments	Number of Quality Indicators		
Expert consensus – RAND-modified Delphi procedure ¹	Serial review of the literature & discussion, amongst experts	Examples • Empirical antibiotic therapy per		
Expert consensus – Antimicrobial stewardship consensus meetings ²		local guideDe-escalationID Consultation		
Total		• Others		

¹ RAND: research and development corporation. van den Bosch. *Clin Infect Dis* 2015;60(2):281. ² Dellit. *Clin Infect Dis* 2007; 44:159 or stewardship guideline development group.

<u>Next</u>...Reviewed studies reporting the impact of the 14 quality indicators, on pre-defined outcomes*

Inclusion

Mortality, LOS Adverse events Bacterial resistance rates Costs

- Hospital or long-term facilities, adults Costs
- Randomized or non-RCTs controlled trials, until April 2014
- Interrupted time series
- Observational studies

Methods

- Pooled outcome data irrespective of study design or type of disorder
- Analyses to assess the risk for bias

Schuts. Lancet Infect Dis 2016; 16:847.

No published data identified of the impact of ASPs for the following.....*future study?*

Specific quality indicators (n=5)

- 1. Documented antibiotic plan
- 2. Blood cultures
- 3. Cultures from the site of infection
- 4. Local guide in agreement with national guidelines
- 5. Assessment of patients' adherence

Facility type

Stewardship objectives for long-term care facilities

Schuts. Lancet Infect Dis 2016; 16:847.

Remaining quality indicators: (n=9) with data evaluating the impact of ASPs

1. Empirical therapy according to the guidelines*

2. De-escalation of therapy*

3. Formal Bedside consultation by an ID specialist*

*Significant benefit demonstrated in >1 of 4 pre-defined outcomes; for ID bedside consultation, for *S. aureus bacteremia*. Schuts. *Lancet Infect Dis* 2016; 16:847.

Prescribing empirical antibiotic therapy according to guidelines

(35% relative risk reduction for <u>mortality</u>¹)

Study or subgroup	Experi	imental	Contro	k	Weight						Odds ratio (95% Cl
	Events	Total	Events	Total							
											0.41 (0.20-0.55)
_	_	_									0-68 (0-53-0-89)
Drima				<mark>,</mark>		-					0.07 (0.01-0.38)
		ly l					-				0.71 (0.55-0.90)
		_									0-30 (0-14-0-61)
								-			Not estimable
	1U		:V-	<u>a (c</u>							2-33 (1-12-4-86)
							_				0.71 (0.23-2.17)
		•	•						_		0-80 (0-49-1-30)
nneur	n	nni						_			0-40 (0-12-1-41)
											0-43 (0-20-0-91)
Galayduyk et al (2008)	30	381	12	50	3-3%						0-27 (0-13-0-57)
Garcia et al (2007)	49	96	40	69	3-8%						0.76 (0.41-1.41)
Grenier et al (2011)	86	1557	109	1097	5-6%						0-53 (0-39-0-71)
Horn et al (2007)	57	262	13	99	3.7%				_	_	1.84 (0.96-3.53)
Huijts et al (2013)	0	947	0	89							Not estimable
Huvent-Grelle et al (2004) 17	64	11	48	2.8%				-		1.22 (0.51-2.91)
Kett et al (2011)	84	129	137	174	4-4%			_			0-50 (0-30-0-84)
Malone et al (2001)	0	279	0	51							Not estimable
Marras et al (1998)	24	201	7	51	2.7%						0-85 (0-35-2-11)
Marras et al (2004)	34	386	4	32	2.1%		_				0-68 (0-22-2-04)
Maxwell et al (2005)	2	124	23	567	1-4%						0-39 (0-09-1-67)
Menendez et al (2002)	24	259	7	36	2-6%			-			0-42 (0-17-1-07)
Menendez et al (2005)	52	960	22	245	4-4%						0-58 (0-35-0-98)
Menendez et al (2007)	19	190	11	81	3.1%						0.71 (0.32-1.56)
Miletin et al (2001)	8	37	7	38	2.0%					_	1.22 (0.39-3.80)
Mortensen et al (2004)	20	323	21	97	3.7%						0-24 (0-120-46)
Pradelli et al (2014)	35	847	37	1370	4-6%			-			1-55 (0-97-2-49)
Reyes et al (2007)	26	325	9	100	3.1%						0-88 (0-40-1-94)
Sakaguchi et al (2013)	4	16	17	69	1.7%					-	1-02 (0-29-3-58)
Silveira et al (2012)	0	66	0	46							Not estimable
Spoorenberg et al (2014)	17	762	11	402	3.2%						0-81 (0-38-1-75)
Triantafyllidis et al (2012)	14	152	17	100	3.2%		_				0-50 (0-23-1-06)
Wilke et al (2011)	10	44	7	38	2.1%				•	_	1·30 (0·44-3·84)
Total (95% CI)		13228		8717	100-0%			•			0-65 (0-54-0-80)
Total events	1163		1075								
					0.005			1			00
Heterogeneity: τ ³ =0·15; χ	'=83·57	2, df=29 (p	c0-0000	Fay	avors experimental				Favors control		
Test for overall effect: Z=4	ŀ-27 (p∢	:0-0001)				Permi	entur				

¹ relative risk 0.65, 95% CI 0.54–0.80, p<0.0001. Schuts. Lancet Infect Dis 2016; 16:847.

<u>De-escalation of therapy</u> (56% relative risk reduction for <u>mortality</u>¹) Study definition

Change to narrow-spectrum antibiotic or stop antibiotics as soon as culture results are

available

<u>Study design</u>

Mostly observational data

¹ RR (risk reduction) 0·44, 95% CI 0·30–0·66, p<0·0001. Schuts. *Lancet Infect Dis* 2016; 16:847.

Bedside ID consultation

(66% mortality reduction in S. aureus bacteremia)

Significant RRR of 66% (RR 0·34, 95% Cl 0·15–0·75, p=0·008. Schuts. *Lancet Infect Dis* 2016; 16:847. Quality indicators

Overall, limited, low quality data

<u>ASP's impact was positive for in >1 outcome</u>

- Therapeutic drug monitoring
- Switch from IV to oral therapy
- Use of a list of restricted antibiotics
- ASP's impact was less clear
- Adjusted of therapy per renal function
- Discontinuation of antibiotic therapy if infection is not confirmed
- Presence of a local guide

Limitations

Interventions assessed separately

- Interventions are generally bundled (in practice)

 Combined effect of meeting several interventions could be greater than that of meeting one

Randomized multi-hospital trials needed:

Test the effectiveness of interventions on achieving <u>meaningful</u> stewardship outcomes

Schuts. Lancet Infect Dis 2016; 16:847.

Comprehensive summary

 Interventions likely to be good starting points for any healthcare system:
 adherence to guidelines de-escalation of therapy

 Identified gaps in data linking interventions to practical outcomes

Graber. Lancet Infect Dis 2016; 16:764. Schuts. Lancet Infect Dis 2016; 16:847.

C. difficile infection (*Lancet Infect Dis*; 2017)

<u>Process</u>

Demonstrating <u>linkage</u> to outcome

<u>Outcomes</u>

Effects of <u>control interventions</u> on *Clostridium difficile* infection in England: an observational study

Lancet Infect Dis 2017; 17: 411–21

Conclusion:

....<u>restriction of fluoroquinolone</u> prescribing, <u>above other interventions</u>

.....appears to explain the <u>decline</u> in incidence of *C. difficile infections*

National recommendation (2007)

- Avoid clindamycin and cephalosporins
- Minimize use of fluoroquinolone, carbapenem and aminopenicillin
- Improved infection prevention and control activities

Why did *C. difficile* infection decrease? (Two hypotheses)

1. If declines were driven by <u>reductions</u> in use of particular <u>antibiotics</u> then:

then the incidence of *C difficile* infection caused by <u>resistant</u> isolates should decline faster than that caused by <u>susceptible</u> isolates across several genotypes.

 If declines were driven by improvements in hospital infection control then: <u>transmitted</u> (secondary) cases should decline regardless of susceptibility.

Methods /definitions

Whole genome sequences:

– clinical *C. difficile* isolates from symptomatic, unique patients during 2006-2013, (n=2021)
– only sequence type, (n=261 isolates)

 Nosocomial transmission = subsequent infections from closely genetically related isolates

Whole genome sequence data suggests:

 FQ restriction plausibly played the most important part in the decline of *C. difficile* infection

Transmission...

Incidence of *C. difficile* infection <u>only</u> fell for <u>secondary cases</u> caused by FQ-resistant isolates

<u>Limitations</u>

• Retrospective, quasi-experimental study

Nevertheless, these findings are compelling, and consistent with other data....

¹Donskey. *Lancet Infect Dis* 2017; 17:343. ² van Kleef. *Lancet Infect Dis* 2017; 17:478.

Antimicrobial Optimization Reduces *C. difficile* infection

Targeted antibiotic (Abx) consumption and nosocomial Clostridium difficile-associated disease (CDAD) incidence per 1000 patient-days of hospitalization.

Valiquette L, et al. Clin Infect Dis 2007;45:S112-S121

Quality Improvement

Demonstrated <u>linkage</u> to improve outcome

Value in healthcare
Better quality *plus*Lower costs

Dodds Ashley. *Clin Infect Dis* 2014;59(S3):S112. Porter. *JAMA* 2016; 316:1047.

JAMA Internal Medicine | Review

Economic Evaluation of Quality Improvement Interventions for Bloodstream Infections Related to Central Catheters A Systematic Review

Figure 2. Net Costs Associated With Prevention of CLABSI and/or CRBSI Interventions From the Hospital Perspective Over 3 Years (2015 US Dollars)

- 57% fewer bloodstream infections
- Net savings in the millions....

...can be of high <u>value</u>

Nuckols. JAMA Intern Med 2016; 176:1843.

Demonstrating the Value of Antimicrobial Stewardship Programs to Hospital Administrators

Reimbursement based on *quality* of care

• <u>ASPs must</u>:

 expand beyond measures linked to cost and utilization

Nagel. Clin Infect Dis 2014;59(S3):S146. Okumura. Lancet Infect Dis 2016; 16:999.

(excerpt)

Regulatory of Quality Improvement Organizations

ASPs can demonstrate value to administrators by:

Optimizing their hospital's compliance with relevant national quality indicators

*NHSN: National Healthcare Safety Network; CDC: Centers for Disease Control and Prevention. CMS: Centers for Medicare & Medicaid Services. AMA: Ameridan Medical Association; PCPI: Physician Consortium Naged rf Grima Infect n Disventer, Safety (SC3) AS 114 Gatory Surgery Center. Nagel. *Clin Infect Dis* 2014;59(S3):S146.
Summary....for now....

 <u>Aggregate NHSN antibiotic measures</u> can be used by hospitals to:

 --identify antibiotics (or classes) that are outliers (compared to similar organizations)

–does not inform on the quality of antibiotic use

Summary....for now....

Performance metrics

Identify important/problematic areas...

- <u>WHAT</u> are we trying to accomplish?
- <u>WHY</u> is it important?
- <u>WHO</u> is the specific target population?
- WHAT are our measureable goals?
- <u>HOW</u> will we know our changes are working?
- HOW do we know if the intervention is harmful?
- <u>HOW</u> completely was intervention <u>implemented</u>?
- VALIDITY of data alternate reasons for results

Finally, more studies....

 Link between ASP interventions (processes) and improved patient outcomes

Value of ASPs

 Health outcomes achieved per dollar spent

Porter. N Engl J Med 2010; 363:2477.

11 years after infection control programs were mandated by the Joint Commission.....

INFECTION CONTROL 1987/Vol. 8, No. 6

Peter C. Fuchs, MD, PhD

Will the Real Infection Rate Please Stand?

Acknowledgements

- Onofre Donceras, RN (Infection Control)¹
- David Schwartz, MD (Infectious Diseases)¹

¹ John H. Stroger Jr. Hospital of Cook County

Questions / comments?

Your experiences with: Joint Commission Survey? NHSN usage measures?