Date: June 26, 2017

From: Sana Shireen Ahmed, BS, MD, EIS Officer, RDB, DBD, NCIRD, CDC
Jasen Kunz, MPH, Environmental Health Specialist, EHSB, DEEHS, NCEH, CDC
Chris Edens, PhD, Epidemiologist, RDB, DBD, NCIRD, CDC
Brian Raphael, PhD, Research Microbiologist, RDB, DBD, NCIRD, CDC
Jessica Smith, MPH, Epidemiologist, RDB, DBD, NCIRD, CDC
Alison Binder, MS, Epidemiologist, RDB, DBD, NCIRD, CDC

Number: Epi-Aid 2016-045

To: Nirav D. Shah, MD, JD Director, IDPH
Connie Austin, DVM, PhD, State Public Health Veterinarian, IDPH
Mai Pho, Medical Advisor for Healthcare Research and Policy
Jennifer E Layden, MD, PhD, Chief Medical Officer and State Epidemiologist, IDPH
Jerrod Welch, MPA, CPHA, Administrator, ACHD
Erica Jefféries, Director, Illinois Department of Veterans Affairs

Through: Josh Mott, MD, MPH, Chief, EWB, DSEPD, CSELS, CDC
Robert Pinner, MD, Director, DBD, NCIRD, CDC
Sharunda Buchanan, PhD, Director, OD, DEEHS, NCEH, CDC
Laurie Johnson, MPH, Deputy Director, OD, DEEHS, NCEH, CDC
Cynthia Whitney, MD, Branch Chief, RDB, DBD, NCIRD, CDC
John Sarisky, RS, MPH, DAAS, Branch Chief, EHSB, DEEHS, NCEH, CDC
Stephanie Schrag, PhD, Team Lead, RDB, DBD, NCIRD, CDC
Laura Cooley, MD, MPHTM, Medical Epidemiologist, RDB, DBD, NCIRD, CDC
Claressa Lucas PhD, Microbiologist, RDB, DBD, NCIRD, CDC
Contents
Background .. 3
Methods ... 7
 Case finding and active surveillance ... 7
 Case definitions .. 7
 Descriptive epidemiology ... 8
 Environmental assessment .. 8
 Environmental sampling ... 8
 Laboratory methods ... 9
Results ... 10
 Case finding and active surveillance .. 10
 Descriptive epidemiology .. 12
 Environmental assessment ... 12
 Laboratory results .. 14
Discussion ... 15
Recommendations .. 16
 Recommendations for ACHD ... 16
 Recommendations for IDPH ... 16
 Clinical surveillance recommendations for LTCF A ... 17
 Environmental recommendations to water management team ... 17
Investigation collaborators .. 20
Figures .. 21
Tables ... 24
References ... 25
Appendix A. LTCF A campus buildings’ characteristics ... 26
Appendix B. Environmental sample results from Epi-Aid and select specimens from environmental contractor .. 27
Appendix C. Water parameter tesing conducted by Epi-Aid team in select buildings and cooling tower .. 32
Background

Legionella in man-made water systems can amplify and be transmitted to susceptible hosts via aerosolized water droplets from systems such as whirlpool spas, showerheads, decorative fountains, and cooling towers, or, rarely, via aspiration of water. The following conditions in building water systems can promote the amplification and potential transmission of *Legionella* (1):

- Warm temperatures (77–108°F)
- Low residual disinfectant levels
- Water stagnation
- Presence of free-living protozoa
- Presence of biofilm, scale, and sediment in piping
- External factors such as changes in water pressure due to construction, water main breaks, or municipal water quality

The risk of acquiring Legionnaires’ disease (LD), a type of pneumonia caused by *Legionella*, can be reduced through environmental control measures. Adequate maintenance of a building’s water system through the implementation of a water management program could reduce risk for *Legionella* amplification and transmission (1).

Long-term care facility A (LTCF A) in Quincy, Illinois, is a 200-acre campus with 48 buildings, including seven residential buildings built from 1886–20111. LTCF A is a veterans’ home, owned and managed by the state of Illinois but operating within the U.S. Department of Veterans Affairs system. The facility employs more than 500 employees and has greater than 100 volunteers. Nursing home care is provided to approximately 392 residents aged 50 and above, of whom some receive care for complex chronic medical conditions and dementia. Provided care ranges from independent living with minimal activities of daily living (ADL) support to total ADL support and skilled nursing care.

1 Please refer to Appendix A for the specific year of construction for each campus building.
On July 27, 2015, the Illinois Department of Public Health (IDPH) consulted CDC after identification of the first lab-confirmed LD case at LTCF A. With the identification of four additional lab-confirmed LD cases at LTCF A, CDC was invited to assist in the ongoing field investigation on August 30, 2015. In collaboration with local and state public health officials, the investigation (Epi-Aid 2015-037) identified *Legionella* colonization in the potable water system and cooling tower. *Legionella pneumophila* serogroup 1 isolates cultured from the two-cell cooling tower and the potable water system of all resident buildings, Nielson dining hall, and decommissioned Andrew infirmary matched two available clinical isolates by sequence type (ST36). Between July 24 and September 20, 2015, there were a reported 47 cases of legionellosis and 12 deaths among residents and six cases among staff (2).

As a result of the outbreak, LTCF A hired a contractor with experience in *Legionella* testing and remediation. In September 2015, the water management team (clinical, facility, and administrative leadership from LTCF A; representatives from the Adams County Health Department (ACHD) and IDPH; a state-certified water operator; and the contractor with *Legionella* experience) developed and implemented a water management program for all campus water systems per ASHRAE Standard 188 (3). The cooling tower was cleaned and decontaminated in August 2015 and the potable water system was hyper chlorinated in September 2015. Supplemental disinfectant (chlorine and chlorine dioxide) was injected into the main campus water inlet until construction of an on-campus secondary disinfection chemical treatment plant was completed in June 2016. Water parameters were routinely monitored, and twice-monthly environmental sampling for *Legionella* was conducted.

As part of the implementation of the water management program, the LTCF A water system underwent extensive changes, with changes being implemented on an ongoing basis as the water management team identified new opportunities for system improvements. Between January 1 and August 11, 2016, changes to the water system included but were not limited to:

- Improvements to the potable water;
 - Removal of large sections of unused piping and the water tower from the water distribution system;
 - Consolidation of municipal water mains to one inlet delivering all potable water to the campus;
- Installation of dedicated recirculating hot water systems in each residential building and Smith Hall kitchen to significantly increase hot water temperatures;
- Installation of automatic flushing stations for on-campus water mains;
- Construction of an on-campus chemical treatment plant for injection of secondary disinfectant (12.5% sodium hypochlorite and chlorine dioxide) into the potable water under guidance of water and chemical treatment service provider;
- Installation of thermostatic mixing valves at sink faucet and shower fixtures, as well as 0.2 micron point-of-use filters for the removal of *Legionella* on all showerheads and hand-held sprayers on therapy tubs; and
- Daily flushing at all terminal fixtures per the water management program.

- Improvements to cooling towers’ operation and maintenance, including automation of the biocide delivery system and chemical parameter monitoring, under the guidance of a water and chemical treatment service provider.

During this time, the water management team deployed various contingency responses (i.e., steps developed and implemented in response to identification of positive *Legionella* cultures or new conditions that promote *Legionella* growth). Contingency responses include activities such as isolating the affected riser pipes, superheating and flushing water through pipes at terminal fixtures, and resampling water for *Legionella* testing. This program also includes testing adjacent terminal fixtures once *Legionella* is detected at a particular fixture, and replacement of a fixture (e.g., sink faucet) if two consecutive water samples are positive for *Legionella* despite remediation.

LTCF A staff reported that increasing hot water temperatures in each residential building water system initially resulted in biofilm and sludge exiting terminal fixtures across the facility and clogging thermostatic mixing valves and point-of-use filters. Thermostatic mixing valves were checked when residents or staff noted decreased flow from fixtures, at which time clogging, or “fouling,” of the valve with sediment and biofilm was noted, requiring replacement or cleaning. Both thermostatic mixing valves and point-of-use filters had to be replaced frequently (e.g., initially, point-of-use filters were clogged after a few hours of use). By the end of June 2016, thermostatic
mixing valve cleaning/replacement still occurred, but with decreased frequency, and point-of-use filters were replaced every 31 days per the manufacturer’s recommendations. Ongoing filter and mixing valve maintenance is outlined in the water management program as a contingency response.

On April 18, 2016, an LTCF A volunteer was diagnosed with LD. This volunteer reported using a dishwashing sprayer at LTCF A’s Smith Hall within the 10 days before symptom onset. LTCF A was notified of the potential facility exposure by ACHD and instituted the following contingency responses on April 27, 2016:

- Removed dishwashing sink, sprayer head, and hose temporarily from service;
- Flushed system with hot water (148–150°F) for 30 minutes; and
- Reconfigured the hot water heater and added a second hot water heater to meet the demands of the Smith Hall hot water usage (maintained temperatures at 150–160°F).

On April 29, 2016, an additional flush was performed with cold water (duration: 30 minutes) and hot water at 151°F (duration: 5 minutes). Environmental sampling was done before volunteers or staff resumed use of the sink to determine if the potential risk of *Legionella* exposure was sufficiently addressed. Water sampling conducted on April 25, May 21, and July 6, 2016 at the dishwashing sink yielded negative results for *Legionella*.

On July 21, 2016, IDPH notified CDC of a second LD case in a LTCF A resident with multiple potential exposures and symptom onset on July 14, 2016. On July 25, 2016, IDPH notified CDC of a third LD case, diagnosed in a resident confined to one building at LTCF A with symptom onset on July 16, 2016. Given heightened concern regarding potential sources and transmission factors in the context of extensive improvements to the premise plumbing systems and cooling towers, an Epi-Aid was requested on July 27, 2016. The CDC Epi-Aid team was deployed August 8–11, 2016 to assist in the investigation.
Methods

Case finding and active surveillance

In collaboration with IDPH, ACHD, and LTCF A staff, the Epi-Aid team reviewed all case finding activities. Several measures had been implemented prospectively to identify cases among LTCF A residents, staff, volunteers, and visitors as well as the surrounding community.

1. Local hospital surveillance records were evaluated to assess trends in all-cause pneumonia diagnoses and to determine if there were increased pneumonia admission rates temporally associated with detection of LD cases at LTCF A. ACHD urged the hospital to proactively report LD cases.
2. LTCF A’s prospective pneumonia surveillance of residents was reviewed to identify increases in pneumonia among residents at the facility.
3. Monthly LD case counts for all counties in the state were reviewed (July 2015–July 2016).

To review LTCF A’s current protocol for rapid identification of residents with fever and early signs of pneumonia, as well as the facility’s diagnostic testing practices for pneumonia, the Epi-Aid team interviewed the facility’s medical director, director of nursing, and infection preventionist.

Case definitions

We defined the outbreak period as January 1–August 11, 2016 (the end date of the Epi-Aid investigation). During the Epi-Aid investigation, we used the following case definitions:

1. **Confirmed LD case:** an illness in an individual with (a) pneumonia diagnosed by chest x-ray, (b) laboratory confirmation of *Legionella* infection (a positive *Legionella* urinary antigen test [UAT] or lower respiratory specimen/tissue culture), and (c) exposure to LTCF A in the 10 days prior to symptom onset during the outbreak period.
2. **Definite healthcare-associated LD case:** Confirmed LD in a resident who spent the entire 10 days prior to onset of illness in a building at LTCF A during the outbreak period.
3. **Possible healthcare-associated LD case:** Confirmed LD in a resident, employee, volunteer, or visitor who spent part of the 10 days before symptom onset at LTCF A during the outbreak period.
Descriptive epidemiology

ACHD staff interviewed patients with confirmed LD regarding possible exposures and shared the information with IDPH and CDC’s Respiratory Diseases Branch via the Research Electronic Data Capture (REDCap) database, a web application for building and sharing online surveys and databases².

Environmental assessment

A timeline of changes to the campus water systems was created from information elicited during IDPH and LTCF A engineering staff interviews and review of documentation (Figure 1). The contractor’s environmental sampling locations and culture results for *Legionella* were overlaid with the timeline of water system changes to identify events that may have precipitated *Legionella* amplification and transmission. Historical data on parameters of water collected at control points and documented contingency responses were reviewed. After synthesizing information from these sources, the team conducted an independent environmental assessment, including testing of water parameters (e.g., maximum hot water temperature, pH, free chlorine level, total chlorine level, and chlorine dioxide level) of the cooling tower and the potable water systems in select buildings to characterize the potential risk of *Legionella* amplification and transmission. The team compared LTCF A’s written water management program to the best practices described in the CDC toolkit “Developing a Water Management Program to Reduce *Legionella* Growth and Spread in Buildings,” a recently published (June 2016) adaption of ASHRAE Standard 188 (3,4).

Environmental sampling

Based on the team’s environmental assessment, as well as a review of both epidemiologic and sampling data from the contractor, the CDC Epi-Aid team collected water samples for *Legionella* culture in select buildings and cooling towers.

Water sampling for *Legionella* was undertaken per previously published protocols (5). One-liter bulk water samples were collected from various points in potable water systems of select buildings, including the hot water

² https://projectredcap.org/
boiler, cold water fixture proximal to the main inlet, rooms of residents with LD, and common bathrooms. Water samples were collected from sites representing the water distribution in the potable water system (at least two resident rooms on each floor located distal to the riser pipes delivering hot water from the boiler/storage tank located in the basement). These samples were taken from showerheads, bathroom faucets, and/or resident room sinks. Showerhead point-of-use filters were removed before sampling to allow access to the piping interior. Bathroom sink faucet fixtures were easily accessible because all aerators had been removed since 2015. In two instances, samples were also collected from distal sinks bypassing the thermostatic mixing valve and one thermostatic mixing valve was inspected from the sink in the room of a resident with LD. Samples were also collected from the cooling tower.

Half a milliliter of 0.1N sodium thiosulfate was added to each 1-liter bottle to neutralize the disinfectant. In one instance, two samples were collected from a terminal fixture with a bottle including the disinfectant neutralizer and one without to determine if *Legionella* was present despite the presence of disinfectant. Biofilm swabs from the potable water system and cooling tower were collected with Dacron-tipped sterile swabs. Swabs were transported in 3–5 mL water with one drop of sodium thiosulfate. Bulk water samples and swabs were maintained in insulated coolers and sent to CDC’s *Legionella* laboratory the day after sample collection.

Laboratory methods

Environmental samples

Environmental samples were cultured for *Legionella pneumophila* at CDC, and isolate serogroup was assessed by slide agglutination testing and direct fluorescence antibody testing (6, 7). Isolates were screened with monoclonal antibodies (MAb) 1 and 2 to determine if they were serogroup 1 and, if so, to provide additional strain-level typing information. All isolates were tested using a 7-gene sequence-based typing scheme to determine sequence type (ST) (8, 9).

3 Please refer to Appendix C for the sampled sites including representative sites from the potable water system.
Ten isolates previously cultured by the contractor and 2 collected from a nearby off-campus cooling tower (identified by ACHD) were sent to CDC for sequence-based typing and comparison.

Results

Case finding and active surveillance

A total of five confirmed LD cases and no deaths were identified in association with LTCF A during January 1–August 12, 2016 (three residents and two on-campus volunteers). In addition to the three cases (two possible healthcare-associated cases in a volunteer and resident and one definite healthcare-associated case in a resident) identified before the Epi-Aid, the team learned of two additional facility-linked cases after arriving:

1. During a review of all reported LD cases in Adams County (from January–July 2016) with ACHD and facility staff, a link to LTCF A was discovered in a previously confirmed LD case from the community. An astute administrator at LTCF A recognized the name of the community case — a current resident who had volunteered before seeking residence at the facility. Despite denying any association to the facility when interviewed by ACHD officials, a retrospective review of volunteer logbooks confirmed that this patient, in fact, volunteered at LTCF A. The volunteer reportedly used the dishwashing sprayer in Smith Hall in the 10 days before symptom onset on March 1, 2016. This case was determined to be the first possible healthcare-associated case for the 2016 outbreak.

2. An additional possible healthcare-associated resident case (with exposure to shower/sinks at off-campus, unoccupied home) was identified by the facility’s active surveillance. On August 1, 2016, the resident on immunosuppressive agents began experiencing fever, weakness, and fatigue, and was diagnosed with radiographically-confirmed pneumonia. This patient was not hospitalized for this illness. The Epi-Aid team was notified of a positive UAT result for this patient on August 9, 2016, during the investigation at the facility.

Based on surveillance data provided by the local hospital, primary and secondary pneumonia diagnoses made during the months of May through August increased each year from 2012 through 2015 (Figure 2).
Approximately one quarter of the hospital’s pneumonia cases in August 2015 occurred in LTCF A residents with LD associated with the 2015 outbreak. Stable or declining pneumonia rates at the local hospital during May through July 2016 suggest that there was not a widespread LD outbreak at LTCF A during 2016.

However, pneumonia surveillance data from LTCF A show the number of residents with pneumonia in March 2016 and July 2016 exceeded one standard deviation above a baseline average for those months during the previous 8 years (Figure 3). Based on the increased number of pneumonia diagnoses at LTCF A and the identification of two confirmed LD cases in July 2016, the Epi-Aid team reviewed the facility’s pneumonia surveillance for potentially unrecognized cases in this month. LTCF A had continued active clinical surveillance for LD among residents since the 2015 outbreak, which entailed ordering chest x-rays for residents with suspected pneumonia (i.e., those experiencing fever, respiratory signs/symptoms associated with pneumonia, or atypical symptoms such as diarrhea or abdominal pain) and UATs for all residents with radiographically-confirmed pneumonia. Infection prevention and nursing staff held weekly meetings to review all pneumonia cases. In July 2016, 20 residents with radiographically-confirmed pneumonia were identified via facility surveillance; 19 of these received UATs. The Epi-Aid team did not identify additional LD cases in the month of July beyond the two cases previously mentioned. The remaining 17 LTCF A residents with radiographically-confirmed pneumonia in July 2016 had the following diagnoses: gram-positive pathogens identified by sputum cultures (n=2), *Mycoplasma pneumoniae* identified by serology (n=1), and pneumonia/bronchitis not otherwise specified (n=14).

Although collection of lower respiratory tract specimens for *Legionella* culture was recommended by public health officials after the 2015 outbreak, the current practices of local healthcare providers have hindered implementation. For example, in July 2016, sputum cultures were obtained for only 2 of 20 residents diagnosed with pneumonia. Furthermore, LTCF A staff reported concern that perhaps UATs were not being ordered when indicated by local healthcare providers external to the facility. UAT continues to be unavailable locally; all urine specimens are tested at an out-of-state, contract laboratory, resulting in delayed clinical diagnosis, public health confirmation of disease (by 4–7 days) and, potentially, delayed outbreak recognition.
Descriptive epidemiology

Residents and volunteers with confirmed LD ranged in age from 78 to 94 years; four were male, two had an immunocompromising condition, and one had a chronic lung disease (Table 1).

Initial case investigations completed by ACHD indicated that each resident with LD was housed in a different building and had no obvious exposures in common (Figure 4). Two of three residents with LD had exposure to therapy tubs located in different buildings 10 days before their symptom onset. Upon review of previously obtained environmental sampling results, the Epi-Aid team found that a therapy tub had a positive *Legionella* culture within days of a possible exposure of one case resident. It was also noted that *Legionella* culture-positive results had been repeatedly obtained from a sink faucet in an unoccupied room adjacent to the room of another case resident. All three resident cases had exposures to their in-room sink faucets. Two of the three residents reported potential off-campus exposures 10 days before their symptom onset (Table 2).

Both facility volunteers with LD had possible exposures outside of campus, but also reported a shared exposure to the dishwasher’s sprayer in Smith Hall (Table 2). Review of the water management team’s sampling results indicated that the dishwashing sprayer grew *Legionella* on March 30, 2016 and April 12, 2016 (days before the second volunteer case’s exposure) after testing negative in February and early March 2016.

Environmental assessment

The Epi-Aid team conducted environmental assessments on buildings that housed the 3 residents with LD, buildings with past *Legionella* positive cultures, Smith Hall, an additional building with predominantly negative water cultures, and the facility’s cooling towers. The team’s findings regarding key parameters related to potential *Legionella* growth and transmission were as follows:

Temperatures
Hot water temperatures in the buildings’ recirculating systems were adequate: before the mixing valves (136–143°F) and at point-of-use after the mixing valves (97.9–108.5°F).

Disinfectant levels
Residual disinfectant in the potable water system were adequate: pH (5.5–7.0), free chlorine (0.7–4.5 mg/L), total chlorine (0.7–4.9 mg/L), and chlorine dioxide (0.0–0.4 mg/L).
Data from the Epi-Aid team’s testing and a review of previous parameter measurements indicated that free chlorine levels routinely exceeded 3.5 mg/L (the maximum limit of detection on the color-wheel test kit used by LTCF A staff). With disinfectant levels near the upper limit of the Environmental Protection Agency’s (EPA) maximum contaminant level in the potable water, the potential for corrosion exists, particularly in buildings with old galvanized pipes. IDPH, in collaboration with Illinois EPA, monitors corrosive parameters (i.e., iron levels) periodically. Most recent results indicate normal corrosive parameters.

A pungent odor from a combination of disinfectant cleaners (quaternary disinfectant cleaner and bleach) was noted by the Epi-Aid team while observing the process of disinfecting a therapy tub no longer in use; the facility was advised to follow the disinfectant manufacturer’s recommendations, and if needed, consult with the chemical disinfectant supplier.

Water stagnation

Low resident occupancy noted in some buildings could contribute to increased risk of *Legionella* growth due to decreased water flow within the system. Per the contingency response first implemented in September 2015, the Epi-Aid team observed maintenance, housekeeping, or nursing staff perform daily flushing in low-occupancy floors and unoccupied resident buildings.

Presence of free-living protozoa, biofilm, scale, and sediment in piping

Maintenance staff identified extensive sedimentation and biofilm in the 100+ year-old galvanized pipes. These pipes distribute potable water within the facility’s residential buildings and continue to be associated with persistent positive *Legionella* culture results from point-of-use fixtures. Newer buildings with mostly negative culture results (e.g., Markwood and Fifer) have copper pipes.

Sedimentation and biofilm were observed on the Smith Hall dishwashing sprayer hose, which had not been replaced since the previous outbreak. Interviews with maintenance staff ascertained that daily hot water flushing of the dishwasher sprayer occurred only on Mondays through Saturdays.

External sources (e.g., construction)

Extensive changes to water systems occurred in response to the first outbreak and may have resulted in water pressure changes (see Introduction, page 4 for details).
Other findings

Although therapy tubs were a possible source exposure for two of three case residents, they were not sampled because the facility had since discontinued use, eliminating the exposure risk going forward. To prevent water stagnation, daily flushing of therapy tubs continues until all tubs are replaced with new soaking tubs, which do not have jets that potentially aerosolize water.

LTCF A’s written water management program aligned with the best practices identified in CDC’s water management toolkit (4). Control measures, control limits, and control points, were routinely identified and corrective actions consistently taken. The program included contingency responses, verification and validation procedures, routine program review, and communication procedures. During the Epi-Aid investigation, the team observed the implementation of the program through daily flushing and disinfection checks by nursing and engineering staff and by auditing logbooks for evidence of cooling tower maintenance, daily flushing, disinfection, and point-of-use filter changes. The team further observed real-time application of contingency responses to potential exposure risks at facility after immediate identification of a resident case on August 9, 2016.

Laboratory results

All confirmed cases had positive UAT results tested at the contract private laboratory. Sputum cultures were not collected for any of the cases.

Of 42 bulk water samples and 27 swabs collected August 9–11, 2016, one bulk water sample from a resident room that was adjacent to a case resident’s room was culture-positive for *Legionella pneumophila* serogroup 1, and also Mab-1 and Mab-2 positive. MAb reactivity provides additional typing information of serogroup 1 isolates; all serogroup 1 isolates are MAb1 positive, and MAb2 is a marker for strains more often associated with LD outbreaks. *Legionella* did not grow from the water sample that did not include the sodium thiosulfate additive. The isolate’s molecular sequence type (ST36) matched the ST isolated in clinical and environmental isolates from the 2015 outbreak. Ten previously cultured water sample isolates collected (April 25–July 19, 2016) by the

4 Please refer to Appendix B for final lab report of all environmental results from Epi-Aid investigation and from ten isolates provided by private contractor.
environmental contractor were also ST36, including a sample from the same adjacent resident room mentioned above3. An isolate recovered from the nearby off-campus cooling tower was ST1, similar to the only other ST found in one on-campus cooling tower from the 2015 outbreak. ST1 is the most common ST found in the environment, often causing sporadic LD cases; it is not among the STs most commonly associated with outbreaks in the United States (10).

Discussion

Since the 2015 outbreak, significant remediation efforts undertaken by LTCF A have substantially reduced the presence of *Legionella* in the potable water system. Based on observations during the Epi-Aid investigation, the water management program was fully implemented, followed, and continuously reviewed by the water management team to optimize the water systems.

In spite of the progress, the potable water system continued to pose a potential risk for *Legionella* growth and transmission. Although the sampling of the Smith Hall kitchen sprayer was negative before the first volunteer cases’ exposure, epidemiologic and water sampling data raise the possibility that the two volunteers with confirmed LD may have been exposed to *Legionella* via the Smith Hall kitchen sprayer. It is also possible that 1 resident with confirmed LD may have been exposed to *Legionella* via a therapy tub. The two most recent LD cases, which included one definite healthcare-associated case, occurred in residents who had possible exposures to the potable water system via in-room sinks. Both residents lived in buildings that had older galvanized pipes and persistent *Legionella* positive results from sinks, despite adequate chlorination and hot water temperatures. We hypothesize that the sloughing of biofilm within the potable water systems was still occurring, given the evidence of extensive biofilm and sedimentation in old pipes and by the fouling of thermostatic mixing valves noted in their sink faucets.

The water management program, including contingency responses, should continue to be reviewed and modified to reduce the risk of *Legionella* amplification and transmission, especially when environmental samples taken from the same sampling location consistently test positive for *Legionella* or new cases occur. Engineering controls could be considered if indicated by concerning trends in clinical or environmental results. Furthermore,
active clinical surveillance should continue to be improved so that along with UATs, lower respiratory specimens are attempted/collected on all patients with symptoms suggestive of LD. It is important to partner with local hospitals and recommend enhanced capacity for UAT testing in order to reduce the time required to receive UAT results.

In conclusion, the 2016 Legionnaires’ disease outbreak at LTCF A was likely attributable to conditions favorable to the amplification and transmission of *Legionella* in the potable water system. In the setting of a 100+ year-old facility, achieving non-detectable *Legionella* levels or completely eradicating *Legionella* is very challenging and optimal control will require time and persistence. To help prevent further cases, efforts to preemptively identify risks with the potable water system and establishment of contingency responses should continue.

Recommendations

The following recommendations are aimed at reducing the risk of *Legionella* growth in the potable water system, reducing the risk of transmission to residents, staff, volunteers or visitors, and improving the current active clinical surveillance and diagnostic practices at the facility.

Recommendations for ACHD

1. Consider providing training to local healthcare providers regarding Legionnaires’ disease presentation and importance of collecting urine for UAT and lower respiratory specimens for culture (including induced sputum cultures, if necessary and when medically appropriate).

2. Facilitate the reduction in the time required to receive results of *Legionella* testing for pneumonia patients by recommending the local hospitals build capacity for on-site UAT (rapid antigen detection test) and culturing *Legionella* from lower respiratory specimens.

3. Continue rapidly investigating confirmed cases of legionellosis among Adams County residents to identify potential exposures at LTCF A.

Recommendations for IDPH

4. Facilitate the reduction in the time required to receive results of *Legionella* testing on pneumonia patients by recommending local hospitals build capacity for on-site UAT (rapid antigen detection test) and
culturing *Legionella* from lower respiratory specimens, or by pursuing collaboration opportunities with laboratories that offer reduced turnaround time for UAT results.

Clinical surveillance recommendations for LTCF A

5. Continue active clinical surveillance for Legionnaires’ disease among residents for at least 2–6 months following identification of a possible healthcare-associated case at LTCF A.
 a. Order chest x-rays in patients with symptoms compatible with Legionnaires’ disease.
 b. Conduct a daily review of ordered chest x-rays to rapidly identify patients with pneumonia.

6. Continue pneumonia surveillance on all persons with radiographically-confirmed pneumonia and update counts of new onsets of pneumonia among residents on a weekly basis; if an increase above baseline is observed:
 a. Notify ACHD.
 b. Conduct further diagnostic testing to identify the etiologic agent (i.e., sputum cultures, TaqMan array card [TAC] testing through the CDC’s unexplained respiratory disease outbreak [URDO] program).

7. Reflexively order sputum (or other lower respiratory specimen) cultures and UAT for all patients with clinically- or radiographically-confirmed pneumonia among patients at risk (https://www.cdc.gov/vitalsigns/pdf/2016-06-vitalsigns.pdf). Lower quality sputum specimens (i.e., with epithelial cells) can still be used to culture *Legionella* if the receiving lab is notified.

Environmental recommendations to water management team

Water Management Program:

8. Continue adapting contingency responses to address identified risks for *Legionella* growth and transmission.

9. If concerning trends in clinical or environmental results are identified, consider implementation of additional engineering controls.

10. Continue weekly interdisciplinary water management team meetings including infection prevention staff.
11. Consider checking thermostatic mixing valves for fouling following positive environmental test results from the associated fixture. If contamination is present, clean or replace mixing valve accordingly.

12. Continue follow-up and communication with all personnel to ensure staff are trained and implementing the flushing protocol per the water management program.
 a. Encourage continued daily flushing of low flow buildings, particularly vacant rooms and unoccupied floors.
 b. Consider adding Smith Hall to the Sunday flushing schedule.

13. Ensure the water management protocol is followed to sample adjacent fixtures of locations that have positive *Legionella* cultures to better characterize the risk in the building water system.

14. Ensure timely and appropriate documentation is maintained in logbooks and water management program database.

15. Continue improved operation and maintenance of cooling tower as observed during the investigation.

Water Sampling and Chemical Parameters:

16. Continue monitoring to ensure adequate residual disinfectant levels; also note the EPA maximum contaminant levels (MCL) for drinking water:
 a. Chlorine: 4.0 mg/L
 b. Chlorine dioxide: 0.8 mg/L

17. Continue monitoring corrosive parameters (i.e., iron levels) of pipes in campus water systems with IDPH and Illinois EPA instruction and support.

18. Consider use of extended range sampling method (0–10 mg/L) for free chlorine levels when color-wheel technique reaches 3.5 mg/L free chlorine (maximum reading capability).

19. Due to the possibility that fouling of thermostatic mixing valves (i.e., contamination with scale, sediment, and biofilm) may be a potential risk of *Legionella* transmission, consider modifying *Legionella* sampling procedure in the water management program to also include cold water samples with the mixing valve bypassed.
20. Consider measuring water parameters (residual disinfectant levels, pH, and temperature) at *Legionella* water sampling locations to allow for further analysis of sites with persistent positive cultures.

21. Consider adding more monitoring points (proximal and distal to water main) to ensure representative sampling in each building.

22. Consider capturing location description information for environmental samples as discrete variables (i.e., adding separate columns for building name, wing, room number, fixture type, hot vs. cold, bulk vs. swab, and whether associated with a potential exposure) in environmental sampling reports to allow for easier data/trend analysis.

Equipment:

23. Replace the dishwashing sprayer and hose at Smith Hall as the biofilm and sediment formation observed may increase risk of *Legionella* transmission; consider periodic evaluation of the Smith Hall sprayer hose for contamination and replace accordingly. Since the dishwashing sprayer is a recognized source of aerosolized water, persons at increased risk for developing Legionnaires’ disease should be advised to avoid use.

People:

24. Continue inclusion of infection prevention staff in water management team to facilitate timely communication of potential exposure risks for patients diagnosed with pneumonia.

25. Continue training and routine audits to ensure staff are following procedures as instructed in the water management program.
Investigation collaborators

Illinois Department of Veterans Affairs
- Erica Jefferies
- Gwen Diehl
- Len Winnicki

Illinois Veterans Home
- Cathy Houston
- Dawn Whitcomb
- Dave Clifford
- Zorian Trusewych
- Lindsey Kelly

Phigenics
- William McCoy
- Marty Detmer
- Lesley Leonidas

Adams County Department of Health
- Shay Drummond
- Jon Campos

Illinois Department of Public Health
- Connie Austin
- Judy Kauerauf
- Mai Pho
- Justin Dewitt
- Aaron Martin
- Ken McCann
Figures

Figure 1. Confirmed Legionnaires’ disease cases by date of symptom onset with select dates of interventions shown — LTCF A, Quincy, Illinois, 2016
Figure 2. Pneumonia diagnoses at local hospital — Quincy, Illinois, 2012–2016

*Graph obtained from local hospital

Figure 3. Monthly pneumonia diagnoses at LTCF A — Quincy, Illinois, January 2009–July 2016
Figure 4. Relative location of facility buildings by presence of resident and staff Legionnaires’ disease cases at LTCF A — Quincy, Illinois, 2016

* Fletcher 1 represents the first floor of the building
† 2 case-volunteers reported a common exposure to a dishwasher sprayer in Smith Hall
Tables

Table 1. Select characteristics of confirmed Legionnaires’ disease (LD) cases — LTCF A, Quincy, Illinois, January 1, 2016–August 12, 2016

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>LD Case N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total cases</td>
<td>5</td>
</tr>
<tr>
<td>Age in years, range</td>
<td>78–94</td>
</tr>
<tr>
<td>Male</td>
<td>4 (80)</td>
</tr>
<tr>
<td>Immunocompromised*</td>
<td>2 (40)</td>
</tr>
<tr>
<td>Chronic lung disease†</td>
<td>1 (20)</td>
</tr>
<tr>
<td>Current smoker</td>
<td>0</td>
</tr>
<tr>
<td>Difficulty swallowing</td>
<td>0</td>
</tr>
<tr>
<td>Hospitalization</td>
<td>4 (80)</td>
</tr>
<tr>
<td>Death</td>
<td>0</td>
</tr>
</tbody>
</table>

*Immunocompromised hosts are people with cancer, diabetes, kidney failure, and drugs that suppress the immune system
†Chronic lung disease includes chronic obstructive pulmonary disease and emphysema

Table 2. Legionnaires’ disease case possible exposure history during 2–10 days before symptom onset — LTCF A, Quincy, Illinois, 2016

<table>
<thead>
<tr>
<th>Case</th>
<th>Date of symptom onset</th>
<th>Building of residence/exposure</th>
<th>Tub</th>
<th>Room sink</th>
<th>Shower</th>
<th>Nebulizer treatment</th>
<th>Off-campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volunteer 1</td>
<td>03/01/16</td>
<td>Smith</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Volunteer 2</td>
<td>04/18/16</td>
<td>Smith</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Resident 1</td>
<td>07/14/16</td>
<td>Fletcher 1</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Resident 2</td>
<td>07/16/16</td>
<td>Schapers B</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Resident 3</td>
<td>08/01/16</td>
<td>Somerville</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 3. Source of *L. pneumophila* in environmental samples and characterization of isolates — LTCF A, Quincy, Illinois, August 2016

<table>
<thead>
<tr>
<th>Sample Location* (no. of positive samples)</th>
<th>L. pneumophila serogroup</th>
<th>Sequence type (ST)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Somerville (3)</td>
<td>1</td>
<td>36</td>
</tr>
<tr>
<td>Fletcher 1† (5)</td>
<td>1</td>
<td>36</td>
</tr>
<tr>
<td>Fletcher 2† (1)</td>
<td>1</td>
<td>36</td>
</tr>
<tr>
<td>Schapers B (1)</td>
<td>1</td>
<td>36</td>
</tr>
<tr>
<td>Smith Hall (1)</td>
<td>1</td>
<td>36</td>
</tr>
<tr>
<td>Off-campus cooling tower</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

*10 of 11 of positive samples collected by private contractor with *Legionella* experience
†Fletcher 1 represents the 1st floor of the Fletcher residential building and Fletcher 2 represents the 2nd floor
References

Appendix A. LTCF A campus buildings’ characteristics

<table>
<thead>
<tr>
<th>STATE ID</th>
<th>NH ID</th>
<th>BUILDING NAME</th>
<th>DATE BUILT</th>
<th>GSF SQFT</th>
<th>FLOORS</th>
<th>BILLOW GRADE</th>
<th>INSPECTED FROM</th>
</tr>
</thead>
<tbody>
<tr>
<td>W0600</td>
<td>37</td>
<td>UPPICOTT HALL</td>
<td>1939</td>
<td>19,824</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>W0601</td>
<td>5</td>
<td>BUS STATION</td>
<td>1935</td>
<td>264</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W0602</td>
<td>47</td>
<td>HOUSEMAID'S QUARTERS</td>
<td>1876</td>
<td>152</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W0603</td>
<td>31</td>
<td>NORTHERN GUEST HOUSE</td>
<td>1876</td>
<td>8,649</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W0604</td>
<td>25</td>
<td>OLD ADMINISTRATION</td>
<td>1876</td>
<td>17,115</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>W0605</td>
<td>41</td>
<td>EQUIPMENT STORAGE</td>
<td>1926</td>
<td>24,289</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>W0606</td>
<td>90</td>
<td>LIBRARY</td>
<td>1905</td>
<td>5,910</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W0607</td>
<td>27</td>
<td>9TH STREET GATEHOUSE</td>
<td>1935</td>
<td>270</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W0608</td>
<td>11</td>
<td>ROLAND BARRACKS</td>
<td>1907</td>
<td>5,625</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W0609</td>
<td>20</td>
<td>SOMERVILLE DOMICILIARY</td>
<td>1909</td>
<td>20,640</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>W0610</td>
<td>21</td>
<td>FOOD BARRACKS</td>
<td>1935</td>
<td>4,355</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W0612</td>
<td>22</td>
<td>ANDERSON BARRACKS</td>
<td>1936</td>
<td>22,640</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>W0613</td>
<td>36</td>
<td>SMITH HALL</td>
<td>1935</td>
<td>18,278</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>W0614</td>
<td>34</td>
<td>MEDICAL STAFF BUILDING</td>
<td>1912</td>
<td>9,454</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>W0615</td>
<td>40</td>
<td>POWER PLANT</td>
<td>1928</td>
<td>17,004</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W0616</td>
<td>83</td>
<td>B-BAY GARAGE</td>
<td>1946</td>
<td>1,885</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W0617</td>
<td>29</td>
<td>RIC. ADMINISTRATION</td>
<td>1936</td>
<td>20,188</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>W0618</td>
<td>26</td>
<td>FLETCHER</td>
<td>1954</td>
<td>27,222</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>W0619</td>
<td>20</td>
<td>ANDREW BARRACKS</td>
<td>1936</td>
<td>20,188</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>W0621</td>
<td>43</td>
<td>SUPERINTENDENT'S RESIDENCE</td>
<td>1926</td>
<td>9,203</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>W0623</td>
<td>42</td>
<td>TRADERSMAN WORKSHOP</td>
<td>1948</td>
<td>3,505</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W0624</td>
<td>50</td>
<td>GREENHOUSE</td>
<td>1955</td>
<td>50</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W0625</td>
<td>54</td>
<td>STORAGE BUILDING</td>
<td>1955</td>
<td>1,036</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W0627</td>
<td>49</td>
<td>CARPENTER SHOP</td>
<td>1955</td>
<td>7,104</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W0628</td>
<td>53</td>
<td>LUMBER SHED</td>
<td>1940</td>
<td>2,858</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W0631</td>
<td>48</td>
<td>5TH STREET GATEHOUSE</td>
<td>1926</td>
<td>190</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W0632</td>
<td>8</td>
<td>STORAGE/GENERAL</td>
<td>1935</td>
<td>767</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>W0635</td>
<td>55</td>
<td>NEW TRUCK GARAGE</td>
<td>2011</td>
<td>6,000</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W0633</td>
<td>35</td>
<td>SIXTON'S BUILDING</td>
<td>1835</td>
<td>124</td>
<td>2</td>
<td>1</td>
<td>Demolished</td>
</tr>
<tr>
<td>W0634</td>
<td>13</td>
<td>ENGINEERING BUILDING</td>
<td>1911</td>
<td>2,625</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>W0637</td>
<td>24</td>
<td>B-BAY GARAGE</td>
<td>1951</td>
<td>924</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W0638</td>
<td>10</td>
<td>BUS GARAGE</td>
<td>1953</td>
<td>764</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W0641</td>
<td>46</td>
<td>DEER FEED SHED</td>
<td>1953</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W0649</td>
<td>92</td>
<td>WELSON DINING/KITCHEN/STORE</td>
<td>1963</td>
<td>40,929</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>W0644</td>
<td>93</td>
<td>SCHAPEL</td>
<td>1963</td>
<td>35,718</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W0645</td>
<td>89</td>
<td>ELE LAUNDRY</td>
<td>1963</td>
<td>9,120</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W0646</td>
<td>94</td>
<td>ELMORE INFIRMARY</td>
<td>1963</td>
<td>34,128</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W0647</td>
<td>90</td>
<td>MARKWOOD INFIRMARY</td>
<td>1964</td>
<td>27,504</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W0648</td>
<td>97</td>
<td>ALL SAVES CHAPEL</td>
<td>1972</td>
<td>5,357</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W0650</td>
<td>91</td>
<td>KENT INFIRMARY</td>
<td>1972</td>
<td>58,850</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>W0651</td>
<td>52</td>
<td>KOCH CEMETARY BUILDING</td>
<td>1966</td>
<td>2,042</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W0652</td>
<td>45</td>
<td>CONDENSATE PUMP HOUSE</td>
<td>1955</td>
<td>40</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W0653</td>
<td>22</td>
<td>SECURITY ANNEX</td>
<td>1927</td>
<td>4,200</td>
<td>9</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>W0654</td>
<td>99</td>
<td>LAUNDRY GARAGE</td>
<td>1986</td>
<td>4,169</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W0655</td>
<td>266/22</td>
<td>INTERCONNECT</td>
<td>1977</td>
<td>853</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W0658</td>
<td>28</td>
<td>TUNNEL SYSTEM</td>
<td>1985</td>
<td>27,250</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>W0657</td>
<td>96</td>
<td>WOOD FRAME STORAGE</td>
<td>1968</td>
<td>156</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W0658</td>
<td>98</td>
<td>AMERICAN LEGION RECREATION BUILDING</td>
<td>1969</td>
<td>2,569</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>W0659</td>
<td>99</td>
<td>AMVETS DEER PARK BUILDING</td>
<td>1929</td>
<td>736</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>W0660</td>
<td>100</td>
<td>MULTI-PURPOSE THERAPY BUILDING</td>
<td>1995</td>
<td>41,100</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>W0661</td>
<td>101</td>
<td>FIFER SKILLED CARE FACILITY</td>
<td>2002</td>
<td>43,077</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Appendix B. Environmental sample results from Epi-Aid and select specimens from environmental contractor

Centers for Disease Control & Prevention

Legionella

Outbreak: IL16-1

<table>
<thead>
<tr>
<th>Project ID</th>
<th>PMS #</th>
<th>Collected</th>
<th>Processed</th>
<th>Sample Data Description</th>
<th>Final Results</th>
<th>Specimen Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-4605</td>
<td>31015353006</td>
<td>07/19/2016</td>
<td>08/16/2016</td>
<td>Isolate-Somerville 303 Sink Hot/warm Sample</td>
<td>F-4605-1l Final Identification = LP L 1, [2]阳性</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-4606</td>
<td>31015353005</td>
<td>07/19/2016</td>
<td>08/16/2016</td>
<td>Isolate-Fletcher 2 Left Sink Hot/warm Sample</td>
<td>F-4606-1l Final Identification = LP L 1, [2]阳性</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-4607</td>
<td>31015353007</td>
<td>06/14/2016</td>
<td>08/16/2016</td>
<td>Isolate-Fletcher 1 R Km 7 R Sink Hot Sample</td>
<td>F-4607-1l Final Identification = LP L 1, [2]阳性</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-4608</td>
<td>31015353008</td>
<td>06/14/2016</td>
<td>08/16/2016</td>
<td>Isolate-Fletcher 1 R Km 5 R Sink Hot Sample</td>
<td>F-4608-1l Final Identification = LP L 1, [2]阳性</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-4609</td>
<td>31015353009</td>
<td>06/14/2016</td>
<td>08/16/2016</td>
<td>Isolate-Fletcher 1 R Km 3 R Sink Hot Sample</td>
<td>F-4609-1l Final Identification = LP L 1, [2]阳性</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-4610</td>
<td>31015353010</td>
<td>06/14/2016</td>
<td>08/16/2016</td>
<td>Isolate-Fletcher 1 R Km 2 L Sink Hot Sample</td>
<td>F-4610-1l Final Identification = LP L 1, [2]阳性</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-4611</td>
<td>31015353011</td>
<td>06/09/2016</td>
<td>08/16/2016</td>
<td>Isolate-Somerville 118 Sink Cold/warm Sample</td>
<td>F-4611-1l Final Identification = LP L 1, [2]阳性</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-4612</td>
<td>31015353012</td>
<td>06/07/2016</td>
<td>08/16/2016</td>
<td>Isolate-Somerville 244 Sink Cold/warm Sample</td>
<td>F-4612-1l Final Identification = LP L 1, [2]阳性</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-4613</td>
<td>31015353013</td>
<td>05/24/2016</td>
<td>08/16/2016</td>
<td>Isolate-Schemers 2 Trub Hot/warm Sample</td>
<td>F-4613-1l Final Identification = LP L 1, [2]阳性</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-4614</td>
<td>31015353014</td>
<td>04/25/2016</td>
<td>08/16/2016</td>
<td>Beith Delmar 127 Sink Hot/warm Sample</td>
<td>F-4614-1l Final Identification = No Legionella Isolated</td>
<td>The broth submitted for culture is non-viable</td>
<td></td>
</tr>
</tbody>
</table>

Somerville, 202, sink, hot blended (case)

- **Source:** Water
- **Sample:** Beith Delmar 127 Sink Hot/warm Sample
- **Final Identification:** No Legionella Isolated
- **Comments:** The broth submitted for culture is non-viable

Somerville, 202, sink, cold blended (case)

- **Source:** Water
- **Sample:** Beith Delmar 127 Sink Hot/warm Sample
- **Final Identification:** No Legionella Isolated
- **Comments:** The broth submitted for culture is non-viable

Somerville, 202, sink

- **Source:** Water
- **Sample:** Beith Delmar 127 Sink Hot/warm Sample
- **Final Identification:** No Legionella Isolated
- **Comments:** The broth submitted for culture is non-viable

Contact Information: (404) 639-3563

Mailstop G03, 1600 Clifton Rd, NE, Atlanta, GA 30333
<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Sample ID</th>
<th>Collected</th>
<th>Processed</th>
<th>Sample Date Description</th>
<th>Test Results</th>
<th>Specimen Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL16-1-004</td>
<td>301332954</td>
<td>08/09/2016</td>
<td>08/21/2016</td>
<td>Sommerville, 2nd fl, women's bathroom, pre-filter</td>
<td>Final identification = No Legionella isolated</td>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>IL16-1-005</td>
<td>301332955</td>
<td>08/09/2016</td>
<td>08/11/2016</td>
<td>Sommerville, 2nd fl, women's bathroom, post-filter</td>
<td>Final identification = No Legionella isolated</td>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>IL16-1-006</td>
<td>301332956</td>
<td>08/09/2016</td>
<td>08/11/2016</td>
<td>Sommerville, 2nd fl, women's bathroom, shower head, dusch hose</td>
<td>Final identification = No Legionella isolated</td>
<td>Swab</td>
<td></td>
</tr>
<tr>
<td>IL16-1-007</td>
<td>301332957</td>
<td>08/09/2016</td>
<td>08/11/2016</td>
<td>Sommerville, 2nd fl, women's bathroom, filter</td>
<td>Final identification = No Legionella isolated</td>
<td>Swab</td>
<td></td>
</tr>
<tr>
<td>IL16-1-008</td>
<td>301332958</td>
<td>08/09/2016</td>
<td>08/11/2016</td>
<td>Sommerville, 2nd fl, women's bathroom, shower head, epigot</td>
<td>Final identification = No Legionella isolated</td>
<td>Swab</td>
<td></td>
</tr>
<tr>
<td>IL16-1-009</td>
<td>301332959</td>
<td>08/09/2016</td>
<td>08/11/2016</td>
<td>Sommerville, 2nd fl, women's bathroom, L. sink, hot blend</td>
<td>Final identification = No Legionella isolated</td>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>IL16-1-010</td>
<td>301332960</td>
<td>08/09/2016</td>
<td>08/11/2016</td>
<td>Sommerville, 203, sink, hot blend, < this (previous *)</td>
<td>Final identification = LT [?]-yes</td>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>IL16-1-010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL16-1-011</td>
<td>301332961</td>
<td>08/09/2016</td>
<td>08/11/2016</td>
<td>Sommerville, 203, sink, hot blend, < this (previous *)</td>
<td>Final identification = No Legionella isolated</td>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>IL16-1-012</td>
<td>301332962</td>
<td>08/09/2016</td>
<td>08/11/2016</td>
<td>Sommerville, 203, sink (replaced), < (previous *)</td>
<td>Final identification = No Legionella isolated</td>
<td>Swab</td>
<td></td>
</tr>
<tr>
<td>IL16-1-013</td>
<td>301332963</td>
<td>08/09/2016</td>
<td>08/11/2016</td>
<td>Sommerville, 132, sink, hot blend</td>
<td>Final identification = No Legionella isolated</td>
<td>Swab</td>
<td></td>
</tr>
<tr>
<td>IL16-1-014</td>
<td>301332964</td>
<td>08/09/2016</td>
<td>08/11/2016</td>
<td>Sommerville, 132, sink</td>
<td>Final identification = No Legionella isolated</td>
<td>Swab</td>
<td></td>
</tr>
<tr>
<td>IL16-1-015</td>
<td>301332965</td>
<td>08/09/2016</td>
<td>08/11/2016</td>
<td>Sommerville, 203, sink cold</td>
<td>Final identification = No Legionella isolated</td>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>IL16-1-016</td>
<td>301332966</td>
<td>08/09/2016</td>
<td>08/11/2016</td>
<td>Sommerville, hot water storage tank #1</td>
<td>Final identification = No Legionella isolated</td>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>IL16-1-017</td>
<td>301332967</td>
<td>08/09/2016</td>
<td>08/11/2016</td>
<td>Sommerville, basement, cold</td>
<td>Final identification = No Legionella isolated</td>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>IL16-1-018</td>
<td>301332968</td>
<td>08/09/2016</td>
<td>08/11/2016</td>
<td>Anderson, 101, sink, hot blend</td>
<td>Final identification = No Legionella isolated</td>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>IL16-1-019</td>
<td>301332969</td>
<td>08/09/2016</td>
<td>08/11/2016</td>
<td>Anderson, 101, sink</td>
<td>Final identification = No Legionella isolated</td>
<td>Swab</td>
<td></td>
</tr>
<tr>
<td>IL16-1-020</td>
<td>301332970</td>
<td>08/09/2016</td>
<td>08/11/2016</td>
<td>Anderson, 203, sink, cold, bypass inner</td>
<td>Final identification = No Legionella isolated</td>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>IL16-1-021</td>
<td>301332971</td>
<td>08/09/2016</td>
<td>08/11/2016</td>
<td>Anderson, hot water storage tank</td>
<td>Final identification = No Legionella isolated</td>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>Sample ID</td>
<td>MOLD #</td>
<td>Collected</td>
<td>Processed</td>
<td>Sample Site Description</td>
<td>Test Results</td>
<td>Equipment Type</td>
<td>Comments</td>
</tr>
<tr>
<td>-------------</td>
<td>--------</td>
<td>-----------------</td>
<td>-----------</td>
<td>--</td>
<td>----------------------------</td>
<td>----------------</td>
<td>----------</td>
</tr>
<tr>
<td>IL16-1-020</td>
<td>3013522672</td>
<td>08/04/2016</td>
<td>08/11/2016</td>
<td>Anderson, basement, cold proximal to main</td>
<td>Final Identification = No Legionella Isolated</td>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>IL16-1-021</td>
<td>3013522673</td>
<td>08/10/2016</td>
<td>08/11/2016</td>
<td>Schapers B, laundry, laundry sink, hot blended</td>
<td>Final Identification = No Legionella Isolated</td>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>IL16-1-024</td>
<td>3013522674</td>
<td>08/10/2016</td>
<td>08/11/2016</td>
<td>Schapers B, laundry, laundry sink, hot blended</td>
<td>Final Identification = No Legionella Isolated</td>
<td>Swab</td>
<td></td>
</tr>
<tr>
<td>IL16-1-025</td>
<td>3013522675</td>
<td>08/10/2016</td>
<td>08/11/2016</td>
<td>Schapers A, sink, cold brass mixer (previews +)</td>
<td>Final Identification = No Legionella Isolated</td>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>IL16-1-026</td>
<td>3013522676</td>
<td>08/04/2016</td>
<td>08/11/2016</td>
<td>Anderson, 203, sink, hot blend</td>
<td>Final Identification = No Legionella Isolated</td>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>IL16-1-027</td>
<td>3013522677</td>
<td>08/09/2016</td>
<td>08/11/2016</td>
<td>Anderson, 203, sink</td>
<td>Final Identification = No Legionella Isolated</td>
<td>Swab</td>
<td></td>
</tr>
<tr>
<td>IL16-1-028</td>
<td>3013522678</td>
<td>08/10/2016</td>
<td>08/11/2016</td>
<td>Schapers A, sink, hot blended (previews +)</td>
<td>Final Identification = No Legionella Isolated</td>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>IL16-1-029</td>
<td>3013522679</td>
<td>08/10/2016</td>
<td>08/11/2016</td>
<td>Schapers A, sink</td>
<td>Final Identification = No Legionella Isolated</td>
<td>Swab</td>
<td></td>
</tr>
<tr>
<td>IL16-1-030</td>
<td>3013522680</td>
<td>08/10/2016</td>
<td>08/11/2016</td>
<td>Schapers B, hot blended (previews +)</td>
<td>Final Identification = No Legionella Isolated</td>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>IL16-1-031</td>
<td>3013522681</td>
<td>08/10/2016</td>
<td>08/11/2016</td>
<td>Schapers B, sink</td>
<td>Final Identification = No Legionella Isolated</td>
<td>Swab</td>
<td></td>
</tr>
<tr>
<td>IL16-1-032</td>
<td>3013522682</td>
<td>08/10/2016</td>
<td>08/11/2016</td>
<td>Schapers A, sink, blended hot</td>
<td>Final Identification = No Legionella Isolated</td>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>IL16-1-033</td>
<td>3013522683</td>
<td>08/10/2016</td>
<td>08/11/2016</td>
<td>Schapers A, sink</td>
<td>Final Identification = No Legionella Isolated</td>
<td>Swab</td>
<td></td>
</tr>
<tr>
<td>IL16-1-034</td>
<td>3013522684</td>
<td>08/10/2016</td>
<td>08/11/2016</td>
<td>Schapers basement, hot water heater</td>
<td>Final Identification = No Legionella Isolated</td>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>IL16-1-035</td>
<td>3013522685</td>
<td>08/10/2016</td>
<td>08/11/2016</td>
<td>Smith, dishwasher sink hot blended</td>
<td>Final Identification = No Legionella Isolated</td>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>IL16-1-036</td>
<td>3013522686</td>
<td>08/10/2016</td>
<td>08/11/2016</td>
<td>Smith, #2 sink, hot blended</td>
<td>Final Identification = No Legionella Isolated</td>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>IL16-1-037</td>
<td>3013522687</td>
<td>08/10/2016</td>
<td>08/11/2016</td>
<td>Smith, dishwasher sink (previews +)</td>
<td>Final Identification = No Legionella Isolated</td>
<td>Swab</td>
<td></td>
</tr>
<tr>
<td>IL16-1-038</td>
<td>3013522688</td>
<td>08/10/2016</td>
<td>08/11/2016</td>
<td>Smith, #3 sink</td>
<td>Final Identification = No Legionella Isolated</td>
<td>Swab</td>
<td></td>
</tr>
<tr>
<td>IL16-1-039</td>
<td>3013522689</td>
<td>08/10/2016</td>
<td>08/11/2016</td>
<td>Smith, #4 sink</td>
<td>Final Identification = No Legionella Isolated</td>
<td>Swab</td>
<td></td>
</tr>
</tbody>
</table>
Centers for Disease Control & Prevention

Legionella

Outbreak: IL16-1

<table>
<thead>
<tr>
<th>Project ID</th>
<th>DSMID #</th>
<th>Collected</th>
<th>Processed</th>
<th>Sample Data Description</th>
<th>Test Results</th>
<th>Department Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL16-1-056</td>
<td>301352990</td>
<td>08/10/2016</td>
<td>08/11/2016</td>
<td>Smith, #1 well sink, cold blended</td>
<td>Final Identification = No Legionella isolated</td>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>IL16-1-057</td>
<td>301352991</td>
<td>08/10/2016</td>
<td>08/11/2016</td>
<td>Smith, #1 well sink, cold bypass mixer</td>
<td>Final Identification = No Legionella isolated</td>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>IL16-1-058</td>
<td>301352992</td>
<td>08/10/2016</td>
<td>08/11/2016</td>
<td>Smith, #1 well sink, hot blended</td>
<td>Final Identification = No Legionella isolated</td>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>IL16-1-059</td>
<td>301352993</td>
<td>08/10/2016</td>
<td>08/11/2016</td>
<td>Smith, basement, hot water heater (left)</td>
<td>Final Identification = No Legionella isolated</td>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>IL16-1-060</td>
<td>301352994</td>
<td>08/10/2016</td>
<td>08/11/2016</td>
<td>Smith, basement, hot water heater (right)</td>
<td>Final Identification = No Legionella isolated</td>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>IL16-1-061</td>
<td>301352995</td>
<td>08/10/2016</td>
<td>08/11/2016</td>
<td>Fletcher, #2, bathroom, sink, left, hot blended</td>
<td>Final Identification = No Legionella isolated</td>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>IL16-1-062</td>
<td>301352996</td>
<td>08/10/2016</td>
<td>08/11/2016</td>
<td>Fletcher, #2, bathroom, sink, left (hot faucet)</td>
<td>Final Identification = No Legionella isolated</td>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>IL16-1-063</td>
<td>301352997</td>
<td>08/10/2016</td>
<td>08/11/2016</td>
<td>Fletcher, #2, bathroom, shower, pre-filter, hot</td>
<td>Final Identification = No Legionella isolated</td>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>IL16-1-064</td>
<td>301352998</td>
<td>08/10/2016</td>
<td>08/11/2016</td>
<td>Fletcher, #2, bathroom, shower, pre-filter</td>
<td>Final Identification = No Legionella isolated</td>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>IL16-1-065</td>
<td>301352999</td>
<td>08/10/2016</td>
<td>08/11/2016</td>
<td>Fletcher, #2, bathroom, sink, right (hot faucet)</td>
<td>Final Identification = No Legionella isolated</td>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>IL16-1-066</td>
<td>301353000</td>
<td>08/10/2016</td>
<td>08/11/2016</td>
<td>Fletcher, #12, bathroom, sink, right, hot blended</td>
<td>Final Identification = No Legionella isolated</td>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>IL16-1-067</td>
<td>301353001</td>
<td>08/10/2016</td>
<td>08/11/2016</td>
<td>Fletcher, #12, bathroom, sink, right (hot faucet)</td>
<td>Final Identification = No Legionella isolated</td>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>IL16-1-068</td>
<td>301353002</td>
<td>08/10/2016</td>
<td>08/11/2016</td>
<td>Fletcher, #26, bathroom, sink, right, hot</td>
<td>Final Identification = No Legionella isolated</td>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>IL16-1-069</td>
<td>301353003</td>
<td>08/10/2016</td>
<td>08/11/2016</td>
<td>Fletcher, #26, bathroom, sink, right, hot</td>
<td>Final Identification = No Legionella isolated</td>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>IL16-1-070</td>
<td>301353004</td>
<td>08/10/2016</td>
<td>08/11/2016</td>
<td>Fletcher, basement, hot water storage tank</td>
<td>Final Identification = No Legionella isolated</td>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>IL16-1-101</td>
<td>301353034</td>
<td>08/10/2016</td>
<td>08/12/2016</td>
<td>Markwood basement O-3 Hot water heater 15150203528</td>
<td>Final Identification = No Legionella isolated</td>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>IL16-1-102</td>
<td>301353035</td>
<td>08/10/2016</td>
<td>08/12/2016</td>
<td>Markwood basement (#4) Hot water heater 15150203533</td>
<td>Final Identification = No Legionella isolated</td>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>IL16-1-103</td>
<td>301353036</td>
<td>08/10/2016</td>
<td>08/12/2016</td>
<td>Markwood room 202/203 shared sink</td>
<td>Final Identification = No Legionella isolated</td>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>Project ID</td>
<td>Date Collected</td>
<td>Processed</td>
<td>Sample Date Description</td>
<td>Test Results</td>
<td>Organism Type</td>
<td>Comments</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>-----------</td>
<td>-------------------------</td>
<td>--------------</td>
<td>---------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>E.L.16-1-104</td>
<td>08/10/2016</td>
<td>08/12/2016</td>
<td>Water, room 205/209 shared sink</td>
<td>Final identification: No Legionella isolated</td>
<td>Water</td>
<td>Swab</td>
<td></td>
</tr>
<tr>
<td>E.L.16-1-105</td>
<td>08/10/2016</td>
<td>08/12/2016</td>
<td>Water, room 205/209 shared sink</td>
<td>Final identification: No Legionella isolated</td>
<td>Water</td>
<td>Swab</td>
<td></td>
</tr>
<tr>
<td>E.L.16-1-106</td>
<td>08/10/2016</td>
<td>08/12/2016</td>
<td>Water, Nurses Lounge sink</td>
<td>Final identification: No Legionella isolated</td>
<td>Water</td>
<td>Swab</td>
<td></td>
</tr>
<tr>
<td>E.L.16-1-107</td>
<td>08/10/2016</td>
<td>08/12/2016</td>
<td>Water, Nurses Lounge sink</td>
<td>Final identification: No Legionella isolated</td>
<td>Water</td>
<td>Swab</td>
<td></td>
</tr>
<tr>
<td>E.L.16-1-108</td>
<td>08/10/2016</td>
<td>08/12/2016</td>
<td>Water, Nurses Lounge sink</td>
<td>Final identification: No Legionella isolated</td>
<td>Water</td>
<td>Swab</td>
<td></td>
</tr>
<tr>
<td>E.L.16-1-110</td>
<td>08/11/2016</td>
<td>08/12/2016</td>
<td>Water, Anderson Room 230 Resident room sink</td>
<td>Final identification: No Legionella isolated</td>
<td>Water</td>
<td>Swab</td>
<td></td>
</tr>
<tr>
<td>E.L.16-1-111</td>
<td>08/11/2016</td>
<td>08/12/2016</td>
<td>Water, Pacheco Labroom sink mixing valve</td>
<td>Final identification: No Legionella isolated</td>
<td>Water</td>
<td>Swab</td>
<td></td>
</tr>
<tr>
<td>E.L.16-1-114</td>
<td>08/11/2016</td>
<td>08/12/2016</td>
<td>C.T. U110560301-2 reservoir line on reservoir water line</td>
<td>Final identification: No Legionella isolated</td>
<td>Water</td>
<td>Swab</td>
<td></td>
</tr>
<tr>
<td>E.L.16-1-115</td>
<td>08/11/2016</td>
<td>08/12/2016</td>
<td>C.T. (no number) reservoir line on reservoir water line</td>
<td>Final identification: No Legionella isolated</td>
<td>Water</td>
<td>Swab</td>
<td></td>
</tr>
</tbody>
</table>
Appendix C. Water parameter testing conducted by Epi-Aid team in select buildings and cooling tower

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Date Collected</th>
<th>Specimen Type</th>
<th>Sample Description</th>
<th>pH</th>
<th>Temp</th>
<th>Total Cl2</th>
<th>Free Cl2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1116-1-001</td>
<td>8/12/2016</td>
<td>Bulkwater - hot</td>
<td>Somerville, RM 202, Resident sink (care patient)</td>
<td>7.0</td>
<td>108.5F</td>
<td>6.5</td>
<td>3.5</td>
</tr>
<tr>
<td>1116-1-002</td>
<td>8/12/2016</td>
<td>Bulkwater - cold (blend)</td>
<td>Somerville, RM 202, Resident sink (care patient)</td>
<td>7.0</td>
<td>107.0F</td>
<td>5.0</td>
<td>4.4</td>
</tr>
<tr>
<td>1116-1-003</td>
<td>8/12/2016</td>
<td>Swab</td>
<td>Somerville, Room 202, Patient (patient)</td>
<td>7.0</td>
<td>96/35</td>
<td>3.5/2.5</td>
<td>0.11</td>
</tr>
<tr>
<td>1116-1-004</td>
<td>8/12/2016</td>
<td>Collected</td>
<td>Somerville, Floor 2, women’s restroom showerhead</td>
<td>7.0</td>
<td>107.0F</td>
<td>5.2/13</td>
<td>3.5/2.5</td>
</tr>
<tr>
<td>1116-1-005</td>
<td>8/12/2016</td>
<td>Swab</td>
<td>Somerville, Floor 2, post-filter showerhead</td>
<td>7.0</td>
<td>107.0F</td>
<td>5.2/13</td>
<td>3.5/2.5</td>
</tr>
<tr>
<td>1116-1-006</td>
<td>8/12/2016</td>
<td>Swab</td>
<td>Somerville, Floor 2, spray-end of shower hose, women’s restroom</td>
<td>7.0</td>
<td>107.0F</td>
<td>5.2/13</td>
<td>3.5/2.5</td>
</tr>
<tr>
<td>1116-1-007</td>
<td>8/12/2016</td>
<td>Swab</td>
<td>Somerville, Floor 2, patient (patient)</td>
<td>7.0</td>
<td>107.0F</td>
<td>5.2/13</td>
<td>3.5/2.5</td>
</tr>
<tr>
<td>1116-1-008</td>
<td>8/12/2016</td>
<td>Swab</td>
<td>Somerville, Floor 2, patient’s room</td>
<td>7.0</td>
<td>107.0F</td>
<td>5.2/13</td>
<td>3.5/2.5</td>
</tr>
<tr>
<td>1116-1-009</td>
<td>8/12/2016</td>
<td>Swab</td>
<td>Somerville, Floor 2, patient’s room</td>
<td>7.0</td>
<td>107.0F</td>
<td>5.2/13</td>
<td>3.5/2.5</td>
</tr>
<tr>
<td>1116-1-010</td>
<td>8/12/2016</td>
<td>Swab</td>
<td>Somerville, Floor 2, patient’s room</td>
<td>7.0</td>
<td>107.0F</td>
<td>5.2/13</td>
<td>3.5/2.5</td>
</tr>
<tr>
<td>1116-1-011</td>
<td>8/12/2016</td>
<td>Hot-Hot water</td>
<td>Somerville, Floor 2, middle faucet, women’s restroom</td>
<td>7.0</td>
<td>95.5</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>1116-1-012</td>
<td>8/12/2016</td>
<td>Hot-Hot water</td>
<td>Somerville, Floor 2, middle faucet, women’s restroom</td>
<td>7.0</td>
<td>95.5</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>1116-1-013</td>
<td>8/12/2016</td>
<td>Swab</td>
<td>Somerville, Floor 2, patient’s room</td>
<td>7.0</td>
<td>95.5</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>1116-1-014</td>
<td>8/12/2016</td>
<td>Swab</td>
<td>Somerville, Floor 2, patient’s room</td>
<td>7.0</td>
<td>95.5</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>1116-1-015</td>
<td>8/12/2016</td>
<td>Swab</td>
<td>Somerville, Floor 2, patient’s room</td>
<td>7.0</td>
<td>95.5</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>1116-1-016</td>
<td>8/12/2016</td>
<td>Cold-Bleaded</td>
<td>Somerville, Floor 2, patient’s room</td>
<td>7.0</td>
<td>95.5</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>1116-1-017</td>
<td>8/12/2016</td>
<td>Cold-Bleaded</td>
<td>Somerville, Floor 2, patient’s room</td>
<td>7.0</td>
<td>95.5</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>1116-1-018</td>
<td>8/12/2016</td>
<td>Cold-Bleaded</td>
<td>Somerville, Floor 2, patient’s room</td>
<td>7.0</td>
<td>95.5</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>1116-1-019</td>
<td>8/12/2016</td>
<td>Cold-Bleaded</td>
<td>Somerville, Floor 2, patient’s room</td>
<td>7.0</td>
<td>95.5</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>1116-1-020</td>
<td>8/12/2016</td>
<td>Cold-Bleaded</td>
<td>Somerville, Floor 2, patient’s room</td>
<td>7.0</td>
<td>95.5</td>
<td>6.0</td>
<td>6.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Date Collected</th>
<th>Specimen Type</th>
<th>Sample Description</th>
<th>pH</th>
<th>Temp</th>
<th>Total Cl₂</th>
<th>Free Cl₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-16-102</td>
<td>8/9/16</td>
<td>Swab</td>
<td>Anderson, rm #1 (resident) sink</td>
<td>7</td>
<td>111.3°F</td>
<td>2.4</td>
<td>1.8</td>
</tr>
<tr>
<td>IL-16-102</td>
<td>8/9/16</td>
<td>Swab</td>
<td>Anderson, rm #1 (resident) sink</td>
<td>4.2</td>
<td>107.7°F</td>
<td>1.5</td>
<td>1.7</td>
</tr>
<tr>
<td>IL-16-102</td>
<td>8/9/16</td>
<td>Swab</td>
<td>Anderson, rm #230 (resident) sink</td>
<td>4.3</td>
<td>102.1°F</td>
<td>1.7</td>
<td>1.6</td>
</tr>
<tr>
<td>IL-16-102</td>
<td>8/9/16</td>
<td>Swab</td>
<td>Anderson, rm #230 (resident) sink</td>
<td>4.9</td>
<td>101.4°F</td>
<td>1.7</td>
<td>1.6</td>
</tr>
<tr>
<td>IL-16-102</td>
<td>8/9/16</td>
<td>Swab</td>
<td>Anderson, rm #107 sink (persistent)</td>
<td></td>
<td></td>
<td>1.7</td>
<td>1.6</td>
</tr>
<tr>
<td>IL-16-102</td>
<td>8/9/16</td>
<td>Swab</td>
<td>Anderson, rm #107 sink (persistent)</td>
<td>7</td>
<td>103.7°F</td>
<td>1.7</td>
<td>1.6</td>
</tr>
<tr>
<td>IL-16-102</td>
<td>8/9/16</td>
<td>Swab</td>
<td>Anderson, rm #107 sink (persistent)</td>
<td></td>
<td></td>
<td>4.9</td>
<td>1.7</td>
</tr>
<tr>
<td>IL-16-102</td>
<td>8/9/16</td>
<td>Swab</td>
<td>Anderson, rm #120 sink (case pt)</td>
<td>7</td>
<td>101.1°F</td>
<td>1.7</td>
<td>1.6</td>
</tr>
<tr>
<td>IL-16-102</td>
<td>8/9/16</td>
<td>Swab</td>
<td>Anderson, rm #120 sink (case pt)</td>
<td>4.5</td>
<td>98.6°F</td>
<td>1.7</td>
<td>1.6</td>
</tr>
<tr>
<td>IL-16-102</td>
<td>8/9/16</td>
<td>Swab</td>
<td>Anderson, rm #120 sink (case pt)</td>
<td>4.5</td>
<td>98.6°F</td>
<td>1.7</td>
<td>1.6</td>
</tr>
<tr>
<td>IL-16-102</td>
<td>8/9/16</td>
<td>Swab</td>
<td>Anderson, rm #120 sink (case pt)</td>
<td>4.5</td>
<td>98.6°F</td>
<td>1.7</td>
<td>1.6</td>
</tr>
<tr>
<td>Sample ID</td>
<td>Date Collected</td>
<td>Species Name</td>
<td>Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>--------------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>016</td>
<td>8/10/16</td>
<td>Smith Hall</td>
<td>Digester Sink (Kitchen)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>087</td>
<td>8/10/16</td>
<td>Smith Hall</td>
<td>Smith Hall #3 well sink (kitchen)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>034</td>
<td>8/10/16</td>
<td>Smith Hall</td>
<td>Smith Hall #2 well sink (kitchen)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>052</td>
<td>8/10/16</td>
<td>Smith Hall</td>
<td>Smith Hall #2 well sink (kitchen)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>053</td>
<td>8/10/16</td>
<td>Smith Hall</td>
<td>Smith Hall #3 well sink (kitchen)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Measurements

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>1.1</td>
</tr>
<tr>
<td>108</td>
<td>0.9</td>
</tr>
<tr>
<td>123</td>
<td>0.9</td>
</tr>
<tr>
<td>171</td>
<td>1.0</td>
</tr>
<tr>
<td>039</td>
<td>0.8</td>
</tr>
<tr>
<td>1.8</td>
<td>0.8</td>
</tr>
<tr>
<td>1.6</td>
<td>0.8</td>
</tr>
<tr>
<td>1.5</td>
<td>0.8</td>
</tr>
<tr>
<td>2.1</td>
<td>0.8</td>
</tr>
<tr>
<td>2.9</td>
<td>0.8</td>
</tr>
<tr>
<td>2.5</td>
<td>0.8</td>
</tr>
<tr>
<td>1.0</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Notes

- Smith Hall: 2 well sinks, cold (kitchen), hot (kitchen)